The ARAUCARIA Project: Deep Near-Infrared Survey of Nearby Galaxies. I. The Distance to the Large Magellanic Cloud from [ITAL]K[/ITAL]-Band Photometry of Red Clump Stars

2002 ◽  
Vol 124 (5) ◽  
pp. 2633-2638 ◽  
Author(s):  
G. Pietrzyński ◽  
W. Gieren
Author(s):  
Takuya Furuta ◽  
Hidehiro Kaneda ◽  
Takuma Kokusho ◽  
Daisuke Ishihara ◽  
Yasushi Nakajima ◽  
...  

ABSTRACT We present a dust extinction AV map of the Large Magellanic Cloud (LMC) in the H i ridge region using the InfraRed Survey Facility (IRSF) near-infrared (IR) data, and compare the AV map with the total hydrogen column density N(H) maps derived from the CO and H i observations. In the LMC H i ridge region, the two-velocity H i components (plus an intermediate velocity component) are identified, and the young massive star cluster is possibly formed by collision between them. In addition, one of the components is suggested to be an inflow gas from the Small Magellanic Cloud (SMC) which is expected to have even lower metallicity gas (Fukui et al. 2017, PASJ, 69, L5). To evaluate dust/gas ratios in the H i ridge region in detail, we derive the AV map from the near-IR color excess of the IRSF data updated with the latest calibration, and fit the resultant AV map with a combination of the N(H) maps of the different velocity components to decompose it successfully into the three components. As a result, we find difference by a factor of 2 in AV/N(H) between the components. In additon, the CO-to-H2 conversion factor also indicates difference between the components, implying a difference in the metallicity. Our results are likely to support the scenario that the gas in the LMC H i ridge region is contaminated with an inflow gas from the SMC with a geometry consistent with the on-going collision between the two-velocity components.


2006 ◽  
Vol 2 (S237) ◽  
pp. 423-423
Author(s):  
H. Hatano ◽  
R. Kadowaki ◽  
D. Kato ◽  
S. Sato ◽  

AbstractA near-infrared survey of the Magellanic Clouds has been carried out with IRSF/SIRIUS. As a part of the results, we present a study of triggered star formation in N11 in the LMC.


1991 ◽  
Vol 148 ◽  
pp. 205-206 ◽  
Author(s):  
A. Krabbe ◽  
J. Storey ◽  
V. Rotaciuc ◽  
S. Drapatz ◽  
R. Genzel

Images with subarcsec spatial resolution in the light of near-infrared atomic (Bry) and molecular hydrogen H2 (S(1) v=1-0) emission lines were obtained for some extended, pointlike objects in the Large Magellanic Cloud (LMC) for the first time. We used the Max-Planck-Institut für extraterrestrische Physik (MPE) near-infrared array spectrometer FAST (image scale 0.8”/pix, spectral resolving power 950) at the ESO/MPI 2.2m telescope, La Silla. We present some results on the 30-Dor complex and N159A5.


Author(s):  
P K Nayak ◽  
A Subramaniam ◽  
S Subramanian ◽  
S Sahu ◽  
C Mondal ◽  
...  

Abstract We have demonstrated the advantage of combining multi-wavelength observations, from the ultraviolet (UV) to near-infrared, to study Kron 3, a massive star cluster in the Small Magellanic Cloud. We have estimated the radius of the cluster Kron 3 to be 2${_{.}^{\prime}}$0 and for the first time, we report the identification of NUV-bright red clump (RC) stars and the extension of the RC in colour and magnitude in the NUV versus (NUV−optical) colour-magnitude diagram (CMD). We found that extension of the RC is an intrinsic property of the cluster and it is not due to contamination of field stars or differential reddening across the field. We studied the spectral energy distribution of the RC stars, and estimated a small range in temperature ∼5000–5500 K, luminosity ∼60–90 L⊙ and radius ∼8.0–11.0 R⊙ supporting their RC nature. The range of UV magnitudes amongst the RC stars (∼23.3 to 24.8 mag) is likely caused by the combined effects of variable mass loss, variation in initial helium abundance (Yini = 0.23 to 0.28), and a small variation in age (6.5-7.5 Gyr) and metallicity ([Fe/H] = −1.5 to −1.3). Spectroscopic follow-up observations of RC stars in Kron 3 are necessary to confirm the cause of the extended RC.


2019 ◽  
Vol 490 (3) ◽  
pp. 4254-4270 ◽  
Author(s):  
Jillian R Neeley ◽  
Massimo Marengo ◽  
Wendy L Freedman ◽  
Barry F Madore ◽  
Rachael L Beaton ◽  
...  

ABSTRACT RR Lyrae stars have long been popular standard candles, but significant advances in methodology and technology have been made in recent years to increase their precision as distance indicators. We present multiwavelength (optical UBVRcIc and Gaia G, BP, RP; near-infrared JHKs; mid-infrared [3.6], [4.5]) period–luminosity–metallicity (PLZ), period–Wesenheit–metallicity (PWZ) relations, calibrated using photometry obtained from the Carnegie RR Lyrae Program and parallaxes from the Gaia second data release for 55 Galactic field RR Lyrae stars. The metallicity slope, which has long been predicted by theoretical relations, can now be measured in all passbands. The scatter in the PLZ relations is on the order of 0.2 mag, and is still dominated by uncertainties in the parallaxes. As a consistency check of our PLZ relations, we also measure the distance modulus to the globular cluster M4, the Large Magellanic Cloud and the Small Magellanic Cloud, and our results are in excellent agreement with estimates from previous studies.


2004 ◽  
Vol 193 ◽  
pp. 189-192
Author(s):  
M. Dall’Ora ◽  
G. Bono ◽  
J. Storm ◽  
V. Ripepi ◽  
V. Testa ◽  
...  

AbstractWe present U, B, V, I (SUSI@NTT) and J,Ks (SOFI@NTT) photometry of the Large Magellanic Cloud (LMC) cluster Reticulum. The observing strategy and data reduction (DAOPHOTII/ALLFRAME) allowed us to reach an accuracy of the order of 0.01 – 0.03 mag in all the bands at limiting magnitudes typical of RR Lyrae stars. Reticulum hosts a sizable sample of RR Lyrae stars (32), and we supply an accurate distance estimate using the RR Lyrae K-band Period-Luminosity-Metallicity (PLZK) relation. This method presents several advantages when compared with the MV vs [Fe/H] relation, since it is only marginally affected by off-ZAHB evolutionary effects and reddening corrections.


1999 ◽  
Vol 190 ◽  
pp. 385-386 ◽  
Author(s):  
M. R. Cioni ◽  
H. J. Habing ◽  
C. Loup ◽  
N. Epchtein ◽  
the DeNIS Consortium

We present infrared photometry of LMC stars taken from a region of 2.5° in right ascension from the DeNIS (Deep Near Infrared Southern Sky Survey) survey.


Sign in / Sign up

Export Citation Format

Share Document