s‐Process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution

2003 ◽  
Vol 586 (2) ◽  
pp. 1305-1319 ◽  
Author(s):  
Maria Lugaro ◽  
Falk Herwig ◽  
John C. Lattanzio ◽  
Roberto Gallino ◽  
Oscar Straniero
2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


1993 ◽  
Vol 155 ◽  
pp. 319-319
Author(s):  
Neill Reid

Asymptotic giant branch stars are the immediate precursors to the planetary nebula stage of stellar evolution. It is clear that the latter stages of a stars life on the AGB are accompanied by either continuous or episodic mass-loss, with the final convulsion being the ejection of the envelope (the future planetary shell), the gradual exposure of the bare CO core and the rapid horizontal evolution to the blue in the H-R diagram. Thus, the structure of the planetary nebula luminosity function, particularly at the higher luminosities (although this phase is extremely rapid), is intimately tied to the luminosity function of the AGB.


1997 ◽  
Vol 476 (1) ◽  
pp. 319-326 ◽  
Author(s):  
K. Justtanont ◽  
A. G. G. M. Tielens ◽  
C. J. Skinner ◽  
Michael R. Haas

2020 ◽  
Vol 501 (1) ◽  
pp. 933-947
Author(s):  
Javiera Parada ◽  
Jeremy Heyl ◽  
Harvey Richer ◽  
Paul Ripoche ◽  
Laurie Rousseau-Nepton

ABSTRACT We introduce a new distance determination method using carbon-rich asymptotic giant branch stars (CS) as standard candles and the Large and Small Magellanic Clouds (LMC and SMC) as the fundamental calibrators. We select the samples of CS from the ((J − Ks)0, J0) colour–magnitude diagrams, as, in this combination of filters, CS are bright and easy to identify. We fit the CS J-band luminosity functions using a Lorentzian distribution modified to allow the distribution to be asymmetric. We use the parameters of the best-fitting distribution to determine if the CS luminosity function of a given galaxy resembles that of the LMC or SMC. Based on this resemblance, we use either the LMC or SMC as the calibrator and estimate the distance to the given galaxy using the median J magnitude ($\overline{J}$) of the CS samples. We apply this new method to the two Local Group galaxies NGC 6822 and IC 1613. We find that NGC 6822 has an ‘LMC-like’ CS luminosity function, while IC 1613 is more ‘SMC-like’. Using the values for the median absolute J magnitude for the LMC and SMC found in Paper I we find a distance modulus of μ0 = 23.54 ± 0.03 (stat) for NGC 6822 and μ0 = 24.34 ± 0.05 (stat) for IC 1613.


2021 ◽  
Author(s):  
Krati Joshi ◽  
Ashakiran Maibam ◽  
Sailaja Krishnamurty

Silicon carbide clusters are significant due to their predominant occurrence in meteoric star dust, particularly in carbon rich asymptotic giant branch stars. Of late, they have also been recognized as...


2004 ◽  
Vol 350 (2) ◽  
pp. 407-426 ◽  
Author(s):  
Robert G. Izzard ◽  
Christopher A. Tout ◽  
Amanda I. Karakas ◽  
Onno R. Pols

2017 ◽  
Vol 606 ◽  
pp. A20 ◽  
Author(s):  
V. Pérez-Mesa ◽  
O. Zamora ◽  
D. A. García-Hernández ◽  
B. Plez ◽  
A. Manchado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document