scholarly journals Mutations in the Transmembrane Natriuretic Peptide Receptor NPR-B Impair Skeletal Growth and Cause Acromesomelic Dysplasia, Type Maroteaux

2004 ◽  
Vol 75 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Cynthia F. Bartels ◽  
Hülya Bükülmez ◽  
Pius Padayatti ◽  
David K. Rhee ◽  
Conny van Ravenswaaij-Arts ◽  
...  
2009 ◽  
Vol 297 (6) ◽  
pp. E1339-E1348 ◽  
Author(s):  
Takei Kake ◽  
Hidetomo Kitamura ◽  
Yuichiro Adachi ◽  
Tetsuro Yoshioka ◽  
Tomoyuki Watanabe ◽  
...  

C-type natriuretic peptide (CNP) plays a critical role in endochondral ossification through guanylyl cyclase-B (GC-B), a natriuretic peptide receptor subtype. Cartilage-specific overexpression of CNP enhances skeletal growth and rescues the dwarfism in a transgenic achondroplasia model with constitutive active mutation of fibroblast growth factor receptor-3. For future clinical application, the efficacy of CNP administration on skeletal growth must be evaluated. Due to the high clearance of CNP, maintaining a high concentration is technically difficult. However, to model high blood CNP concentration, we established a liver-targeted CNP-overexpressing transgenic mouse (SAP-CNP tgm). SAP-CNP tgm exhibited skeletal overgrowth in proportion to the blood CNP concentration and revealed phenotypes of systemic stimulation of cartilage bones, including limbs, paws, costal bones, spine, and skull. Furthermore, in SAP-CNP tgm, the size of the foramen magnum, the insufficient formation of which results in cervico-medullary compression in achondroplasia, also showed significant increase. CNP primarily activates GC-B, but under high concentrations it cross-reacts with guanylyl cyclase-A (GC-A), a natriuretic peptide receptor subtype of atrial natriuretic peptides (ANP) and brain natriuretic peptides (BNP). Although activation of GC-A could alter cardiovascular homeostasis, leading to hypotension and heart weight reduction, the skeletal overgrowth phenotype in the line of SAP-CNP tgm with mild overexpression of CNP did not accompany decrease of systolic blood pressure or heart weight. These results suggest that CNP administration stimulates skeletal growth without adverse cardiovascular effect, and thus CNP could be a promising remedy targeting achondroplasia.


Hypertension ◽  
1997 ◽  
Vol 30 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Miki Nagase ◽  
Katsuyuki Ando ◽  
Takeshi Katafuchi ◽  
Akira Kato ◽  
Shigehisa Hirose ◽  
...  

2002 ◽  
Vol 362 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Hugo POIRIER ◽  
Jean LABRECQUE ◽  
Julie DESCHÊNES ◽  
André DeLÉAN

The microbial polysaccharide HS-142-1 has been documented as an antagonist of natriuretic peptides. It inhibits activation and peptide binding to both guanylate receptors natriuretic peptide receptor (NPR)-A and NPR-B, but has no effect on the non-cyclase receptor NPR-C. At first sight the effect of HS-142-1 on peptide binding appears to be surmountable, suggesting that it might be competitive despite its chemically divergent nature. We explored its mode of action on wild-type NPR-A (WT), on a disulphide-bridged constitutively active mutant (C423S) and on truncated mutants lacking either their cytoplasmic domain (ΔKC) or both the cytoplasmic and the transmembrane domains (ECD). On the WT, HS-142-1 inhibited atrial natriuretic peptide (ANP) binding with a pK value of 6.51±0.07 (Kd = 0.31μM). It displayed a similar effect on the C423S mutant (pK = 6.31±0.11), indicating that its action might not be due to interference with receptor dimerization. HS-142-1 also inhibited ANP binding to ΔKC with a pK of 7.05±0.05 (Kd = 0.089μM), but it was inactive on ANP binding to ECD at a concentration of 10−4M, suggesting that the antagonism was not competitive at the peptide-binding site located on the ECD and that the transmembrane domain might be required. HS-142-1 also enhanced dissociation of NPR-A-bound 125I-ANP in the presence of excess unlabelled ANP, implying an allotopic (allosteric) mode of action for the antagonist.


1991 ◽  
Vol 266 (17) ◽  
pp. 11122-11125
Author(s):  
T. Saheki ◽  
T. Mizuno ◽  
T. Iwata ◽  
Y. Saito ◽  
T. Nagasawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document