scholarly journals Immunological Memory after Exposure to Variola Virus, Monkeypox Virus, and Vaccinia Virus

2007 ◽  
Vol 195 (8) ◽  
pp. 1151-1159 ◽  
Author(s):  
Sumathi Sivapalasingam ◽  
Jeffrey S. Kennedy ◽  
William Borkowsky ◽  
Fred Valentine ◽  
Ming‐Xia Zhan ◽  
...  

2015 ◽  
Vol 89 (20) ◽  
pp. 10489-10499 ◽  
Author(s):  
William D. Arndt ◽  
Samantha Cotsmire ◽  
Kelly Trainor ◽  
Heather Harrington ◽  
Kevin Hauns ◽  
...  

ABSTRACTThe vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue.IMPORTANCEPoxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.





Virology ◽  
2016 ◽  
Vol 497 ◽  
pp. 125-135 ◽  
Author(s):  
William D. Arndt ◽  
Stacy D. White ◽  
Brian P. Johnson ◽  
Trung Huynh ◽  
Jeffrey Liao ◽  
...  


2007 ◽  
Vol 81 (17) ◽  
pp. 8989-8995 ◽  
Author(s):  
Zhaochun Chen ◽  
Patricia Earl ◽  
Jeffrey Americo ◽  
Inger Damon ◽  
Scott K. Smith ◽  
...  

ABSTRACT Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human γ1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (Kd of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.



2006 ◽  
Vol 80 (11) ◽  
pp. 5179-5188 ◽  
Author(s):  
Masayuki Saijo ◽  
Yasushi Ami ◽  
Yuriko Suzaki ◽  
Noriyo Nagata ◽  
Naoko Iwata ◽  
...  

ABSTRACT The potential threat of smallpox as a bioweapon has led to the production and stockpiling of smallpox vaccine in some countries. Human monkeypox, a rare but important viral zoonosis endemic to central and western Africa, has recently emerged in the United States. Thus, even though smallpox has been eradicated, a vaccinia virus vaccine that can induce protective immunity against smallpox and monkeypox is still invaluable. The ability of the highly attenuated vaccinia virus vaccine strain LC16m8, with a mutation in the important immunogenic membrane protein B5R, to induce protective immunity against monkeypox in nonhuman primates was evaluated in comparison with the parental Lister strain. Monkeys were immunized with LC16m8 or Lister and then infected intranasally or subcutaneously with monkeypox virus strain Liberia or Zr-599, respectively. Immunized monkeys showed no symptoms of monkeypox in the intranasal-inoculation model, while nonimmunized controls showed typical symptoms. In the subcutaneous-inoculation model, monkeys immunized with LC16m8 showed no symptoms of monkeypox except for a mild ulcer at the site of monkeypox virus inoculation, and those immunized with Lister showed no symptoms of monkeypox, while nonimmunized controls showed lethal and typical symptoms. These results indicate that LC16m8 prevents lethal monkeypox in monkeys, and they suggest that LC16m8 may induce protective immunity against smallpox.



mBio ◽  
2021 ◽  
Author(s):  
Tatiana G. Senkevich ◽  
Natalya Yutin ◽  
Yuri I. Wolf ◽  
Eugene V. Koonin ◽  
Bernard Moss

Orthopoxviruses (ORPV) include smallpox (variola) virus, one of the most devastating human pathogens, and vaccinia virus, comprising the vaccine used for smallpox eradication. Among roughly 200 ORPV genes, about half are essential for genome replication and expression as well as virion morphogenesis, whereas the remaining half consists of accessory genes counteracting the host immune response.



2015 ◽  
Vol 6 (3) ◽  
pp. e1680-e1680 ◽  
Author(s):  
B Marshall ◽  
H Puthalakath ◽  
S Caria ◽  
S Chugh ◽  
M Doerflinger ◽  
...  
Keyword(s):  


2009 ◽  
Vol 53 (6) ◽  
pp. 2620-2625 ◽  
Author(s):  
John Huggins ◽  
Arthur Goff ◽  
Lisa Hensley ◽  
Eric Mucker ◽  
Josh Shamblin ◽  
...  

ABSTRACT ST-246, a potent orthopoxvirus egress inhibitor, is safe and effective at preventing disease and death in studies of small-animal models involving challenge by several different pathogenic poxviruses. In this report, the antiviral efficacy of ST-246 in treatment of nonhuman primates infected with variola virus or monkeypox virus was assessed. The data indicate that oral dosing once per day with ST-246 protects animals from poxvirus disease, as measured by reductions in viral load and numbers of lesions and enhancement of survival.



Vaccine ◽  
2011 ◽  
Vol 29 (52) ◽  
pp. 9684-9690 ◽  
Author(s):  
Karen L. Denzler ◽  
Tahar Babas ◽  
Amy Rippeon ◽  
Trung Huynh ◽  
Nobuko Fukushima ◽  
...  


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Jitendra Kumar ◽  
Viveka Nand Yadav ◽  
Swastik Phulera ◽  
Ashish Kamble ◽  
Avneesh Kumar Gautam ◽  
...  

ABSTRACTPoxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals.IMPORTANCEVaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b—one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle.



Sign in / Sign up

Export Citation Format

Share Document