complement control protein
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 7)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Q. Qiu ◽  
Shaopeiwen Luo ◽  
Stefanie A. Ma ◽  
Priyanka Saminathan ◽  
Herman Li ◽  
...  

The Sez6 family consists of Sez6, Sez6L, and Sez6L2. Its members are expressed throughout the brain and have been shown to influence synapse numbers and dendritic morphology. They are also linked to various neurological and psychiatric disorders. All Sez6 family members contain 2-3 CUB domains and 5 complement control protein (CCP) domains, suggesting that they may be involved in complement regulation. We show that Sez6 family members inhibit C3b/iC3b opsonization by the classical and alternative pathways with varying degrees of efficacy. For the classical pathway, Sez6 is a strong inhibitor, Sez6L2 is a moderate inhibitor, and Sez6L is a weak inhibitor. For the alternative pathway, the complement inhibitory activity of Sez6, Sez6L, and Sez6L2 all equaled or exceeded the activity of the known complement regulator MCP. Using Sez6L2 as the representative family member, we show that it specifically accelerates the dissociation of C3 convertases. Sez6L2 also functions as a cofactor for Factor I to facilitate the cleavage of C3b; however, Sez6L2 has no cofactor activity toward C4b. In summary, the Sez6 family are novel complement regulators that inhibit C3 convertases and promote C3b degradation.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Maria G. Detsika ◽  
Elias A. Lianos

Heme oxygenase is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties. Its cytoprotective role is mainly attributed to its enzymatic activity, which involves the degradation of heme to biliverdin with simultaneous release of carbon monoxide (CO). Recent studies uncovered a new cytoprotective role for heme oxygenase-1 (HO-1) by identifying a regulatory role on the complement control protein decay-accelerating factor. This is a key complement regulatory protein preventing dysregulation or overactivation of complement cascades that can cause kidney injury. Cell-specific targeting of HO-1 induction may, therefore, be a novel approach to attenuate complement-dependent forms of kidney disease.


Author(s):  
Wen Q. Qiu ◽  
Shaopeiwen Luo ◽  
Stefanie A. Ma ◽  
Priyanka Saminathan ◽  
Herman Li ◽  
...  

AbstractThe Sez6 family consists of Sez6, Sez6L, and Sez6L2. Its members are expressed throughout the brain and have been shown to influence synapse numbers and dendritic morphology. They are also linked to various neurological and psychiatric disorders. All Sez6 family members contain 2-3 CUB domains and 5 complement control protein (CCP) domains, suggesting that they may be involved in complement regulation. We show that all Sez6 family members inhibit C3 deposition by the classical and alterative pathways with varying degrees of efficacy. For the classical pathway, Sez6 is a strong inhibitor, Sez6L2 is a moderate inhibitor, and Sez6L is a weak inhibitor. Using Sez6L2 as the representative family member, we show that it specifically deactivates C3 convertases by accelerating the decay or dissociation of the C3 convertase components. Sez6L2 also deactivates C3 convertases of the alternative pathway by serving as a cofactor for Factor I to facilitate the cleavage of C3b. However, Sez6L2 has no cofactor activity toward C4b. In summary, the Sez6 family are novel complement regulators that inhibit C3 convertases.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Francesco Vacca ◽  
Caroline Chauché ◽  
Abhishek Jamwal ◽  
Elizabeth C Hinchy ◽  
Graham Heieis ◽  
...  

The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.


2019 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Paraskevi Eva Andronikidis ◽  
Papanikolaou Vasiliki ◽  
Plavoukou Styliani ◽  
Tsouka Glykeria ◽  
Delibasi Sosanna ◽  
...  

2019 ◽  
Vol 116 (20) ◽  
pp. 9953-9958 ◽  
Author(s):  
Hemendra Singh Panwar ◽  
Hina Ojha ◽  
Payel Ghosh ◽  
Sagar H. Barage ◽  
Sunil Raut ◽  
...  

The complement system is highly efficient in targeting pathogens, but lack of its apposite regulation results in host-cell damage, which is linked to diseases. Thus, complement activation is tightly regulated by a series of proteins, which primarily belong to the regulators of complement activation (RCA) family. Structurally, these proteins are composed of repeating complement control protein (CCP) domains where two to four successive domains contribute to the regulatory functions termed decay-accelerating activity (DAA) and cofactor activity (CFA). However, the precise constitution of the functional units and whether these units can be joined to form a larger composition with dual function have not been demonstrated. Herein, we have parsed the functional units for DAA and CFA by constructing chimeras of the decay-accelerating factor (DAF) that exhibits DAA and membrane cofactor protein (MCP) that exhibits CFA. We show that in a four-CCP framework, a functional unit for each of the regulatory activities is formed by only two successive CCPs wherein each participates in the function, albeit CCP2 has a bipartite function. Additionally, optimal activity requires C-terminal domains that enhance the avidity of the molecule for C3b/C4b. Furthermore, by composing a four-CCP DAF-MCP chimera with robust CFA (for C3b and C4b) and DAA (for classical and alternative pathway C3 convertases), named decay cofactor protein, we show that CCP functional units can be linked to design a dual-activity regulator. These data indicate that the regulatory determinants for these two biological processes are distinct and modular in nature.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193740 ◽  
Author(s):  
Nilisha Fernando ◽  
Riccardo Natoli ◽  
Tanja Racic ◽  
Yvette Wooff ◽  
Jan Provis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document