scholarly journals Varicella‐Zoster Virus Glycoprotein gE: Endocytosis and Trafficking of the Fc Receptor

1998 ◽  
Vol 178 (s1) ◽  
pp. S2-S6 ◽  
Author(s):  
Julie K. Olson ◽  
Richard A. Santos ◽  
Charles Grose
Virology ◽  
1990 ◽  
Vol 178 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Virginia Litwin ◽  
Matyas Sandor ◽  
Charles Grose

Virology ◽  
1998 ◽  
Vol 249 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Richard A. Santos ◽  
Jorge A. Padilla ◽  
Christopher Hatfield ◽  
Charles Grose

1999 ◽  
Vol 73 (2) ◽  
pp. 1320-1330 ◽  
Author(s):  
Ming Ye ◽  
Karen M. Duus ◽  
Junmin Peng ◽  
David H. Price ◽  
Charles Grose

Varicella-zoster virus (VZV) glycoprotein gI is a type 1 transmembrane glycoprotein which is one component of the heterodimeric gE:gI Fc receptor complex. Like VZV gE, VZV gI was phosphorylated in both VZV-infected cells and gI-transfected cells. Preliminary studies demonstrated that a serine 343-proline 344 sequence located within the gI cytoplasmic tail was the most likely phosphorylation site. To determine which protein kinase catalyzed the gI phosphorylation event, we constructed a fusion protein, consisting of glutathione-S-transferase (GST) and the gI cytoplasmic tail, called GST-gI-wt. When this fusion protein was used as a substrate for gI phosphorylation in vitro, the results demonstrated that GST-gI-wt fusion protein was phosphorylated by a representative cyclin-dependent kinase (CDK) called P-TEFb, a homologue of CDK1 (cdc2). When serine 343 within the serine-proline phosphorylation site was replaced with an alanine residue, the level of phosphorylation of the gI fusion protein was greatly reduced. Subsequent experiments with individually immunoprecipitated mammalian CDKs revealed that the VZV gI fusion protein was phosphorylated best by CDK1, to a lesser degree by CDK2, and not at all by CDK6. Transient-transfection assays carried out in the presence of the specific CDK inhibitor roscovitine strongly supported the prior results by demonstrating a marked decrease in gI phosphorylation while gI protein expression was unaffected. Finally, the possibility that VZV gI contained a CDK phosphorylation site in its endodomain was of further interest because its partner, gE, contains a casein kinase II phosphorylation site in its endodomain; prior studies have established that CDK1 can phosphorylate casein kinase II.


Sign in / Sign up

Export Citation Format

Share Document