glycoprotein e
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 36)

H-INDEX

35
(FIVE YEARS 4)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Arnaud John Kombe Kombe ◽  
Jiajia Xie ◽  
Ayesha Zahid ◽  
Huan Ma ◽  
Guangtao Xu ◽  
...  

Varicella and herpes zoster are mild symptoms-associated diseases caused by varicella–zoster virus (VZV). They often cause severe complications (disseminated zoster), leading to death when diagnoses and treatment are delayed. However, most commercial VZV diagnostic tests have low sensitivity, and the most sensitive tests are unevenly available worldwide. Here, we developed and validated a highly sensitive VZV diagnostic kit based on the chemiluminescent immunoassay (CLIA) approach. VZV-glycoprotein E (gE) was used to develop a CLIA diagnostic approach for detecting VZV-specific IgA, IgG, and IgM. The kit was tested with 62 blood samples from 29 VZV-patients classified by standard ELISA into true-positive and equivocal groups and 453 blood samples from VZV-negative individuals. The diagnostic accuracy of the CLIA kit was evaluated by receiver-operating characteristic (ROC) analysis. The relationships of immunoglobulin-isotype levels between the two groups and with patient age ranges were analyzed. Overall, the developed CLIA-based diagnostic kit demonstrated the detection of VZV-specific immunoglobulin titers depending on sample dilution. From the ELISA-based true-positive patient samples, the diagnostic approach showed sensitivities of 95.2%, 95.2%, and 97.6% and specificities of 98.0%, 100%, and 98.9% for the detection of VZV-gE-specific IgA, IgG, and IgM, respectively. Combining IgM to IgG and IgA detection improved diagnostic accuracy. Comparative analyses on diagnosing patients with equivocal results displaying very low immunoglobulin titers revealed that the CLIA-based diagnostic approach is overall more sensitive than ELISA. In the presence of typical VZV symptoms, CLIA-based detection of high titer of IgM and low titer of IgA/IgG suggested the equivocal patients experienced primary VZV infection. Furthermore, while no difference in IgA/IgG level was found regarding patient age, IgM level was significantly higher in young adults. The CLIA approach-based detection kit for diagnosing VZV-gE-specific IgA, IgG, and IgM is simple, suitable for high-throughput routine analysis situations, and provides enhanced specificity compared to ELISA.


2021 ◽  
Author(s):  
wenzhong liu ◽  
hualan li

Infection with the Zika virus results in severe neurological disease in adults or congenital Zika syndrome in newborns. We employed the domain search strategy to study the Zika virus glycoprotein E in this work. The results revealed that immature E contains a NGF domain (“MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH”) and is capable of interacting with TrkA. The E/TrkA complex increased E's interaction with receptors such as Axl and facilitated Zika virus endocytosis via clathrin. Rab5 retrograded transmission of Zika virus-containing E/TrkA endosomal signals to neuronal soma. Rab7 helped dissociation of E/TrkA in late acidic endosomes, and then E became mature after the NGF domain was cut. After membrane fusion with the endosome, the Zika virus was released into the neuron cell body. It showed only the immature E protein of Zika had NGF activity. The retrograde trafficking of endosomal signals (E/TrkA) similar to NGF/TrkA enabled Zika virus to infect neuronal cells. E's interference with the TrkA signal impaired neuronal cell growth and results in neuronal cell apoptosis.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1440
Author(s):  
Han Cao ◽  
Yunfei Wang ◽  
Ning Luan ◽  
Kangyang Lin ◽  
Cunbao Liu

Glycoprotein E (gE) is one of the most abundant glycoproteins in varicella-zoster virus and plays pivotal roles in virus replication and transmission between ganglia cells. Its extracellular domain has been successfully used as an antigen in subunit zoster vaccines. The intracellular C-terminal domain was reported to be decisive for gE trafficking between the endoplasmic reticulum, trans-Golgi network and endosomes and could influence virus spread and virus titers. Considering that the trafficking and distribution of mRNA vaccine-translated gE may be different from those of gE translated against the background of the viral genome (e.g., most gE in virus-infected cells exists as heterodimers with another glycoprotein, gI,), which may influence the immunogenicity of gE-based mRNA vaccines, we compared the humoral and cellular immunity induced by LNP-encapsulated mRNA sequences encoding the whole length of gE, the extracellular domain of gE and a C-terminal double mutant of gE (mutant Y569A with original motif AYRV, which targets gE to TGN, and mutants S593A, S595A, T596A and T598A with the original motif SSTT) that were reported to enhance virus spread and elevate virus titers. The results showed that while the humoral and cellular immunity induced by all of the mRNA vaccines was comparable to or better than that induced by the AS01B-adjuvanted subunit vaccines, the C-terminal double mutant of gE showed stable advantages in all of the indicators tested, including gE-specific IgG titers and T cell responses, and could be adopted as a candidate for both safer varicella vaccines and effective zoster vaccines.


2021 ◽  
pp. 104063872110407
Author(s):  
Ting-Yu Cheng ◽  
Ronaldo Magtoto ◽  
Alexandra Henao-Díaz ◽  
Korakrit Poonsuk ◽  
Alexandra Buckley ◽  
...  

Pseudorabies (Aujeszky disease) virus (PRV) was eliminated from domestic swine in many countries using glycoprotein E (gE)-deleted vaccines and serum antibody gE ELISAs, but PRV continues to circulate in some regions and in most feral swine populations in the world. We created a dual-matrix (serum and oral fluid) indirect IgG gE ELISA (iELISA) and evaluated its performance using samples from 4 groups of 10 pigs each: negative control (NC), vaccination (MLV), PRV inoculation (PRV), and vaccination followed by challenge (MLV-PRV). All serum and oral fluid samples collected before PRV challenge and all NC samples throughout the study were negative for gE antibodies by commercial blocking ELISA (bELISA) and our iELISA. Nasal swab samples from 9 of 10 animals in the PRV group were gB quantitative PRC (qPCR) positive at 2 days post-inoculation (dpi). The oral fluid iELISA detected a significant S/P response in the PRV ( p = 0.03) and MLV-PRV ( p = 0.01) groups by 6 dpi. ROC analyses of serum bELISA ( n = 428), serum iELISA ( n = 426), and oral fluid iELISA ( n = 247) showed no significant differences in performance ( p > 0.05). Our data support the concept of PRV surveillance based on oral fluid samples tested by an indirect gE ELISA.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1494
Author(s):  
Ivan K. Baykov ◽  
Pavel Y. Desyukevich ◽  
Ekaterina E. Mikhaylova ◽  
Olga M. Kurchenko ◽  
Nina V. Tikunova

Tick-borne encephalitis virus (TBEV) causes 5−7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.


2021 ◽  
Author(s):  
Ivan K. Baykov ◽  
Grzegorz Chojnowski ◽  
Petr Pachl ◽  
Andrey L. Matveev ◽  
Nina A. Moor ◽  
...  

Tick-borne encephalitis virus (TBEV) causes about 5-6 thousand cases annually, while there is still no effective treatment for this virus. To fill this gap, a high-affinity chimeric anti-TBEV antibody ch14D5 has previously been constructed, and high protective activity in a murine TBEV model has been shown for this antibody. However, the mechanism of action of this antibody and the recognized epitope have not been known yet. In this study, it is shown by X-ray crystallography that this antibody recognizes a unique epitope on the lateral ridge of the D3 domain of glycoprotein E, which is readily accessible for binding. The orientation of this antibody relative to the virion surface makes bivalent binding possible, which facilitates the cross-linking of glycoprotein E molecules and thus blocking of surface rearrangements required for infection. Since the antibody tightly binds to this protein even at pH ~ 5.0, it locks the virion in an acidic environment inside the late endosomes or phagosomes and, therefore, effectively blocks the fusion of the viral and endosomal/phagosomal membranes. We believe that this is why the ch14D5 antibody does not induce an antibody-dependent enhancement of infection in vivo, which is critical in the development of antibody-based therapeutic agents. In addition, the structure of the antibody-glycoprotein E interface can be used for the rational design of this antibody for enhancing its properties.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3016
Author(s):  
Kingshuk Panda ◽  
Kalichamy Alagarasu ◽  
Poonam Patil ◽  
Megha Agrawal ◽  
Ashwini More ◽  
...  

Dengue virus (DENV), a member of the family Flaviviridae, is a threat for global health as it infects more than 100 million people yearly. Approved antiviral therapies or vaccines for the treatment or prevention of DENV infections are not available. In the present study, natural compounds were screened for their antiviral activity against DENV by in vitro cell line-based assay. α-Mangostin, a xanthanoid, was observed to exert antiviral activity against DENV-2 under pre-, co- and post-treatment testing conditions. The antiviral activity was determined by foci forming unit (FFU) assay, quantitative RT-PCR and cell-based immunofluorescence assay (IFA). A complete inhibition of DENV-2 was observed at 8 µM under the co-treatment condition. The possible inhibitory mechanism of α-Mangostin was also determined by docking studies. The molecular docking experiments indicate that α-Mangostin can interact with multiple DENV protein targets such as the NS5 methyltransferase, NS2B-NS3 protease and the glycoprotein E. The in vitro and in silico findings suggest that α-Mangostin possesses the ability to suppress DENV-2 production at different stages of its replication cycle and might act as a prophylactic/therapeutic agent against DENV-2.


Sign in / Sign up

Export Citation Format

Share Document