scholarly journals Breakdown of Paraendothelial Barrier Function during Marburg Virus Infection Is Associated with Early Tyrosine Phosphorylation of Platelet Endothelial Cell Adhesion Molecule–1

2007 ◽  
Vol 196 (s2) ◽  
pp. S337-S346 ◽  
Author(s):  
Michael Böckeler ◽  
Ute Ströher ◽  
Jochen Seebach ◽  
Tatiana Afanasieva ◽  
Norbert Suttorp ◽  
...  
Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Milenko Cicmil ◽  
Joanne M. Thomas ◽  
Mireille Leduc ◽  
Cassian Bon ◽  
Jonathan M. Gibbins

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)–bearing receptors such as the collagen receptor GPVI-Fc receptor γ-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.


2002 ◽  
Vol 158 (4) ◽  
pp. 773-785 ◽  
Author(s):  
Masaki Osawa ◽  
Michitaka Masuda ◽  
Ken-ichi Kusano ◽  
Keigi Fujiwara

Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal–regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l–coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.


1998 ◽  
Vol 5 (2-3) ◽  
pp. 179-188 ◽  
Author(s):  
MICHAEL J EPPIHIMER ◽  
J A N I C E RUSELL ◽  
R O B E R T LANGLEY ◽  
G I N A VALLIEN ◽  
DONALD C ANDERSON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document