Source-to-Sink Analysis of the Gold-hosting, Mesoarchean, Main and Mondeor formations (Central Rand Group) in the area south of Johannesburg, Witwatersrand Basin, Kaapvaal Province, South Africa

2021 ◽  
Author(s):  
Kenneth A. Eriksson ◽  
Wilson McClung
1997 ◽  
Vol 44 (3) ◽  
pp. 353-371 ◽  
Author(s):  
L. J. Robb ◽  
E. G. Charlesworth ◽  
G. R. Drennan ◽  
R. L. Gibson ◽  
E. L. Tongu

2006 ◽  
Vol 361 (1470) ◽  
pp. 917-929 ◽  
Author(s):  
James F Kasting ◽  
Shuhei Ono

Earth's climate during the Archaean remains highly uncertain, as the relevant geologic evidence is sparse and occasionally contradictory. Oxygen isotopes in cherts suggest that between 3.5 and 3.2 Gyr ago (Ga) the Archaean climate was hot (55–85 °C); however, the fact that these cherts have experienced only a modest amount of weathering suggests that the climate was temperate, as today. The presence of diamictites in the Pongola Supergroup and the Witwatersrand Basin of South Africa suggests that by 2.9 Ga the climate was glacial. The Late Archaean was relatively warm; then glaciation (possibly of global extent) reappeared in the Early Palaeoproterozoic, around 2.3–2.4 Ga. Fitting these climatic constraints with a model requires high concentrations of atmospheric CO 2 or CH 4 , or both. Solar luminosity was 20–25% lower than today, so elevated greenhouse gas concentrations were needed just to keep the mean surface temperature above freezing. A rise in O 2 at approximately 2.4 Ga, and a concomitant decrease in CH 4 , provides a natural explanation for the Palaeoproterozoic glaciations. The Mid-Archaean glaciations may have been caused by a drawdown in H 2 and CH 4 caused by the origin of bacterial sulphate reduction. More work is needed to test this latter hypothesis.


Author(s):  
G. T. Nwaila ◽  
J. E. Bourdeau ◽  
Z. Jinnah ◽  
H. E. Frimmel ◽  
G. M. Bybee ◽  
...  

Abstract Within the eastern portion of the Carletonville gold field, the gold- and uranium-rich Carbon Leader reef of the Central Rand Group (Witwatersrand Supergroup) is truncated by an erosion channel. This channel is asymmetrical and lenticular in shape, measuring 150 to 180 m in width and up to 100 m in depth. High-resolution seismic data show that the erosion channel cuts from the Carbon Leader reef into all older units of the Central Rand Group down to the Roodepoort Formation of the underlying West Rand Group. A total of seven bore-holes were drilled into the channel, revealing that it is composed of quartzite at its base (9 m thick), overlain by deformed (lower) and laminated (upper) chloritoid-bearing shale (21 m thick) and quartzite (18 m thick). The Carbon Leader reef is highly enriched in gold (5–40 g/t Au), whereas the gold tenor of the erosion channel fill is in general much lower (<1 g/t Au), although locally grades of as much as 3.8 g/t Au are reached. Detailed seismic, sedimentological, and petrographic analyses revealed that the channel was filled with locally sourced sediments from the Main Formation. A closed-system mass balance further demonstrates that gold in the erosion channel could have been entirely sourced from the Carbon Leader reef. Sediment load played a crucial role in the distribution of gold in the channel, thus supporting a stratigraphically controlled modified placer model for the origin of gold in the Carbon Leader reef.


Geology ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 931 ◽  
Author(s):  
Birger Rasmussen ◽  
Ian R. Fletcher ◽  
Janet R. Muhling ◽  
Andreas G. Mueller ◽  
Greg C. Hall

2003 ◽  
Vol 67 (4) ◽  
pp. 709-731 ◽  
Author(s):  
Natalie Kositcin ◽  
Neal J. McNaughton ◽  
Brendan J. Griffin ◽  
Ian R. Fletcher ◽  
David I. Groves ◽  
...  

2006 ◽  
Vol 23 (6) ◽  
pp. 369-414 ◽  
Author(s):  
T. C. Onstott ◽  
L.-H. Lin ◽  
M. Davidson ◽  
B. Mislowack ◽  
M. Borcsik ◽  
...  

2020 ◽  
Author(s):  
Claire Mallard ◽  
Tristan Salles ◽  
Sabin Zahirovic ◽  
Xuesong Ding

<p>Over deep time, mantle flow-induced dynamic topography drives deposition moderated by higher-frequency fluctuations in climate and sea level. The effects of deep mantle convection impact all the segment of the source to sink systems at different wavelengths and over various scales which remains poorly quantified. Field observations and numerical investigations suggest that the long-term stratigraphic record along continental margins contains essential clues on the interactions between dynamic topography and surface processes. However, it remains challenging to isolate the fingerprints of dynamic topography in the geological record.</p><p>We use the open-source surface evolution code Badlands (badlands.readthedocs.io), to quantify the impact of different timings and wavelengths of dynamic topography migration on the South African landscape responses.</p><p>We test three different dynamic topography scenarios obtained by both backwards advection and forwards modelling of mantle flow. We investigate their influence on landscape dynamics, stratal geometries and depositional patterns of South Africa over the past 40 Ma. We compare the evolution of the drainage organization, sediments flux, and stratigraphy obtained with the models with seismic, geochronological, and thermochronological data. We demonstrate that inland incision, spatial sediment accumulation, and depocenter migration strongly depend on the direction of sediment transport relative to the direction of dynamic topography propagation. It allows to identify realistic evolutions of mantle flow associated with the South African uplift history. Our results suggest that our source-to-sink numerical workflow can be used to explore, in a systematic way, the interplay between dynamic topography and surface processes and can provide insights into recognizing the geomorphic and stratigraphic signals of dynamic topography in the geological record.</p>


Sign in / Sign up

Export Citation Format

Share Document