scholarly journals A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES

2011 ◽  
Vol 142 (2) ◽  
pp. 37 ◽  
Author(s):  
Andreas Schruba ◽  
Adam K. Leroy ◽  
Fabian Walter ◽  
Frank Bigiel ◽  
Elias Brinks ◽  
...  
2020 ◽  
Vol 634 ◽  
pp. A24 ◽  
Author(s):  
Nimisha Kumari ◽  
Mike J. Irwin ◽  
Bethan L. James

Context. The global Schmidt law of star formation provides a power-law relation between the surface densities of star-formation rate (SFR) and gas, and successfully explains plausible scenarios of galaxy formation and evolution. However, star formation being a multi-scale process, requires spatially-resolved analysis for a better understanding of the physics of star formation. Aims. It has been shown that the removal of a diffuse background from SFR tracers, such as Hα, far-ultraviolet (FUV), infrared, leads to an increase in the slope of the sub-galactic Schmidt relation. We reinvestigate the local Schmidt relations in nine nearby spiral galaxies taking into account the effect of inclusion and removal of diffuse background in SFR tracers as well as in the atomic gas. Methods. We used multiwavelength data obtained as part of the Spitzer Infrared Nearby Galaxies Survey, Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel, The H I Nearby Galaxy Survey, and HERA CO-Line Extragalactic Survey. Making use of a novel split of the overall light distribution as a function of spatial scale, we subtracted the diffuse background in the SFR tracers as well as the atomic gas. Using aperture photometry, we study the Schmidt relations on background subtracted and unsubtracted data at physical scales varying between 0.5–2 kpc. Results. The fraction of diffuse background varies from galaxy to galaxy and accounts to ∼34% in Hα, ∼43% in FUV, ∼37% in 24 μm, and ∼75% in H I on average. We find that the inclusion of diffuse background in SFR tracers leads to a linear molecular gas Schmidt relation and a bimodal total gas Schmidt relation. However, the removal of diffuse background in SFR tracers leads to a super-linear molecular gas Schmidt relation. A further removal of the diffuse background from atomic gas results in a slope ∼1.4 ± 0.1, which agrees with dynamical models of star formation accounting for flaring effects in the outer regions of galaxies.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2009 ◽  
Vol 695 (2) ◽  
pp. 937-953 ◽  
Author(s):  
R. Braun ◽  
D. A. Thilker ◽  
R. A. M. Walterbos ◽  
E. Corbelli

Author(s):  
Jurgen Ott ◽  
Evan Skillman ◽  
Julianne Dalcanton ◽  
Fabian Walter ◽  
Andrew West ◽  
...  

2015 ◽  
Author(s):  
Rob J. Beswick ◽  
Elias Brinks ◽  
Miguel Perez-Torres ◽  
Anita Richards ◽  
Susanne Aalto ◽  
...  

2016 ◽  
Vol 11 (S322) ◽  
pp. 245-252 ◽  
Author(s):  
Francoise Combes

AbstractUnderstanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.


1988 ◽  
Vol 101 ◽  
pp. 447-459
Author(s):  
Richard McCray

AbstractRepeated supernovae from an OB association will, in a few ×107 yr, create a cavity of coronal gas in the interstellar medium, with radius > 100 pc, surrounded by a dense expanding shell of cool interstellar gas. Such a cavity will likely burst through the gas layer of a disk galaxy. Such holes and “supershells” have been observed in optical and H I radio emission maps of the Milky Way and other nearby galaxies. The gas swept up in the supershell is likely to become gravitationally unstable, providing a mechanism for propagating star formation that may be particularly effective in irregular galaxies.


2008 ◽  
Vol 136 (6) ◽  
pp. 2846-2871 ◽  
Author(s):  
F. Bigiel ◽  
A. Leroy ◽  
F. Walter ◽  
E. Brinks ◽  
W. J. G. de Blok ◽  
...  

2010 ◽  
Vol 6 (S270) ◽  
pp. 327-334 ◽  
Author(s):  
Frank Bigiel ◽  
Adam Leroy ◽  
Fabian Walter

AbstractHigh resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas – ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas – ΣSFR space.


Sign in / Sign up

Export Citation Format

Share Document