Dynamics, Star Formation and Chemical Evolution in the Nearby Galaxies from Studies of Their Stellar Systems

Author(s):  
Mary Kontizas ◽  
Evangelos Kontizas
2015 ◽  
Vol 11 (S317) ◽  
pp. 164-169
Author(s):  
Donatella Romano

AbstractOur view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


Author(s):  
Jurgen Ott ◽  
Evan Skillman ◽  
Julianne Dalcanton ◽  
Fabian Walter ◽  
Andrew West ◽  
...  

2015 ◽  
Author(s):  
Rob J. Beswick ◽  
Elias Brinks ◽  
Miguel Perez-Torres ◽  
Anita Richards ◽  
Susanne Aalto ◽  
...  

1983 ◽  
Vol 6 ◽  
pp. 179-186
Author(s):  
J. R. Mould

This review will take the linear view of the history of stellar systems. Thus the last billion years of a dwarf galaxy’s development receives no special attention. A considerable amount of information has recently come to light on the intermediate age populations of dwarf galaxies.


1983 ◽  
Vol 6 ◽  
pp. 209-216 ◽  
Author(s):  
J.A. Graham

In talking about the overall distance scale of the Universe and the Hubble Constant, the Magellanic Clouds are good places to start. They are stellar systems large enough to contain stars, clusters and nebulae of all types, covering a wide age range. With modern telescopes and detectors, we are able to observe stars from the very bright down to those fainter intrinsically than our own Sun. From comparative studies, we may thus establish our basic calibrations of bright objects before moving out to measure the Universe at large. At the same time, the fact that both Magellanic Clouds are independently evolving galaxies, enables us to separate the effects of stellar age and chemical evolution on the calibrations that we make.


New Astronomy ◽  
2013 ◽  
Vol 23-24 ◽  
pp. 118-125 ◽  
Author(s):  
Ankan Das ◽  
Liton Majumdar ◽  
Sandip K. Chakrabarti ◽  
Sonali Chakrabarti

2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β < 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2016 ◽  
Vol 11 (S322) ◽  
pp. 245-252 ◽  
Author(s):  
Francoise Combes

AbstractUnderstanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.


Sign in / Sign up

Export Citation Format

Share Document