scholarly journals H I IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO

2009 ◽  
Vol 696 (1) ◽  
pp. 385-395 ◽  
Author(s):  
Jana Grcevich ◽  
Mary E Putman
1999 ◽  
Vol 186 ◽  
pp. 52-52
Author(s):  
E.K. Grebel

Observations at high redshifts are revealing numerous interactions and ongoing mergers. Our own Milky Way is currently merging with the Sagittarius dwarf spheroidal (dSph) galaxy. Past mergers with dwarf galaxies may have contributed significantly to the Galactic halo and possibly to the thick disk. The properties of Local Group dSphs and halo globular clusters impose constraints on the merger history of the Milky Way.


2014 ◽  
Vol 29 (14) ◽  
pp. 1430012 ◽  
Author(s):  
G. J. Mathews ◽  
A. Snedden ◽  
L. A. Phillips ◽  
I.-S. Suh ◽  
J. Coughlin ◽  
...  

The Milky Way is the product of a complex evolution of generations of mergers, collapse, star formation, supernova and collisional heating, radiative and collisional cooling, and ejected nucleosynthesis. Moreover, all of this occurs in the context of the cosmic expansion, the formation of cosmic filaments, dark matter halos, spiral density waves, and emerging dark energy. In this review we summarize observational evidence and discuss recent calculations concerning the formation, evolution nucleosynthesis in the galaxies of the Local Group (LG). In particular, we will briefly summarize observations and simulations for the dwarf galaxies and the two large spirals of the LG. We discuss how galactic halos form within the dark matter filaments that define a super-galactic plane. Gravitational interaction along this structure leads to streaming flows toward the two dominant galaxies in the cluster. These simulations and observations also suggest that a significant fraction of the Galactic halo formed as at large distances and then arrived later along these streaming flows. We also consider the insight provided by observations and simulations of nucleosynthesis both within the galactic halo and dwarf galaxies in the LG.


2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


2020 ◽  
Vol 496 (1) ◽  
pp. L70-L74
Author(s):  
Henriette Wirth ◽  
Kenji Bekki ◽  
Kohei Hayashi

ABSTRACT Recent observational studies of γ-ray emission from massive globular clusters (GCs) have revealed possible evidence of dark matter (DM) annihilation within GCs. It is, however, still controversial whether the emission comes from DM or from millisecond pulsars. We here present the new results of numerical simulations, which demonstrate that GCs with DM can originate from nucleated dwarfs orbiting the ancient Milky Way. The simulated stripped nuclei (i.e. GCs) have the central DM densities ranging from 0.1 to several M⊙ pc−3, depending on the orbits and the masses of the host dwarf galaxies. However, GCs born outside the central regions of their hosts can have no/little DM after their hosts are destroyed and the GCs become the Galactic halo GCs. These results suggest that only GCs originating from stellar nuclei of dwarfs can possibly have DM. We further calculate the expected γ-ray emission from these simulated GCs and compare them to observations of ω Cen. Given the large range of DM densities in the simulated GCs, we suggest that the recent possible detection of DM annihilation from GCs should be more carefully interpreted.


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


Sign in / Sign up

Export Citation Format

Share Document