scholarly journals RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

2009 ◽  
Vol 696 (2) ◽  
pp. 1864-1870 ◽  
Author(s):  
Wendy Stroman ◽  
Martin Pohl
2021 ◽  
Vol 2103 (1) ◽  
pp. 012016
Author(s):  
A M Bykov ◽  
Y A Uvarov

Abstract Supernova remnants (SNRs) are well known sources of the non-thermal radiation, particle acceleration and magnetic field generation and amplification. Synchrotron radiation of the accelerated electrons in the magnetic field is an important emission mechanism in SNRs that can dominate in radio and X-ray energy bands. Turbulent magnetic field yields to formation of the special inhomogeneous (clumpy) structure in the SNR synchrotron X-ray images. This structure could differ significantly on the SNR polarization maps for different types of the magnetic turbulence. A new family of the gas pixel detector X-ray polarimeters that are supposed to have good sensitivity and angular resolution should be well suited for SNR polarimetry. IXPE (NASA) will be the first polarimeter of this kind. Lately a model IXPE synchrotron polarization images of Tycho SNR were simulated in the 3 — 8 keV energy band. It was shown that IXPE observation time of ~ 1 Ms should be enough to distinguish characteristic features that are specific for some types of the magnetic turbulence. We perform simulations of Tycho SNR polarization maps for a wider set of energy bands in order to determine the most suitable energy range for study of the SNR turbulent magnetic field using IXPE. The dependence of the polarization degree on the photon energy is accurately considered in the simulations. IXPE background influence on the observations of Tycho SNR is also discussed here together with possible ways of data processing and interpretation reducing this effect.


2016 ◽  
Author(s):  
Robert Brose ◽  
Igor Telezhinsky ◽  
Martin Pohl

2015 ◽  
Vol 81 (4) ◽  
Author(s):  
Lev M. Zelenyi ◽  
Andrei M. Bykov ◽  
Yury A. Uvarov ◽  
Anton V. Artemyev

We briefly review some aspects of magnetic turbulence intermittency observed in space plasmas. Deviation of statistical characteristics of a system (e.g. its high statistical momenta) from the Gaussian can manifest itself as domination of rare large intensity peaks often associated with the intermittency in the system's dynamics. Thirty years ago, Zeldovich stressed the importance of the non-Gaussian appearance of the sharp values of vector and scalar physical parameters in random media as a factor of magnetic field amplification in cosmic structures. Magnetic turbulence is governing the behavior of collisionless plasmas in space and especially the physics of shocks and magnetic reconnections. Clear evidence of intermittent magnetic turbulence was found in recent in-situ spacecraft measurements of magnetic fields in the near-Earth and interplanetary plasma environments. We discuss the potentially promising approaches of incorporating the knowledge gained from spacecraft in-situ measurements into modern models describing plasma dynamics and radiation in various astrophysical systems. As an example, we discuss supernova remnants (SNRs) which are known to be the sources of energy, momentum, chemical elements, and high-energy cosmic rays (CRs) in galaxies. Supernova shocks accelerate charged particles to very high energies and may strongly amplify turbulent magnetic fields via instabilities driven by CRs. Relativistic electrons accelerated in SNRs radiate polarized synchrotron emission in a broad range of frequencies spanning from the radio to gamma-rays. We discuss the effects of intermittency of magnetic turbulence on the images of polarized synchrotron X-ray emission of young SNRs and emission spectra of pulsar wind nebula.


2016 ◽  
Vol 593 ◽  
pp. A20 ◽  
Author(s):  
R. Brose ◽  
I. Telezhinsky ◽  
M. Pohl

2020 ◽  
Vol 899 (2) ◽  
pp. 142
Author(s):  
Andrei M. Bykov ◽  
Yury A. Uvarov ◽  
Patrick Slane ◽  
Donald C. Ellison

2020 ◽  
Vol 634 ◽  
pp. A59 ◽  
Author(s):  
R. Brose ◽  
M. Pohl ◽  
I. Sushch ◽  
O. Petruk ◽  
T. Kuzyo

Context. Supernova remnants are known to accelerate cosmic rays on account of their nonthermal emission of radio waves, X-rays, and gamma rays. Although there are many models for the acceleration of cosmic rays in supernova remnants, the escape of cosmic rays from these sources has not yet been adequately studied. Aims. We aim to use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. Methods. We performed spherically symmetric 1D simulations in which we simultaneously solved the transport equations for cosmic rays, magnetic turbulence, and the hydrodynamical flow of the thermal plasma in a volume large enough to keep all cosmic rays in the simulation. The transport equations for cosmic rays and magnetic turbulence were coupled via the cosmic-ray gradient and the spatial diffusion coefficient of the cosmic rays, while the cosmic-ray feedback onto the shock structure can be ignored. Our simulations span 100 000 years, thus covering the free-expansion, the Sedov–Taylor, and the beginning of the post-adiabatic phase of the remnant’s evolution. Results. At later stages of the evolution, cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration, and feature breaks in the 10 − 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. We further find the gamma-ray luminosity to peak around an age of 4000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media generally emit more inverse-Compton radiation, matching the fact that the brightest known supernova remnants – RCW86, Vela Jr., HESS J1731−347 and RX J1713.7−3946 – are all expanding in low density environments.


1977 ◽  
Vol 38 (C6) ◽  
pp. C6-103-C6-110
Author(s):  
A. SAMAIN
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document