scholarly journals JOINT ANALYSIS OF NEAR-INFRARED PROPERTIES AND SURFACE BRIGHTNESS FLUCTUATIONS OF LARGE MAGELLANIC CLOUD STAR CLUSTERS

2009 ◽  
Vol 700 (2) ◽  
pp. 1247-1261 ◽  
Author(s):  
G. Raimondo
2005 ◽  
Vol 363 (4) ◽  
pp. 1279-1289 ◽  
Author(s):  
R. A. González-Lópezlira ◽  
M. Y. Albarrán ◽  
M. Mouhcine ◽  
M. C. Liu ◽  
G. Bruzual-A. ◽  
...  

2020 ◽  
Vol 498 (1) ◽  
pp. 205-222
Author(s):  
João F C Santos ◽  
Francisco F S Maia ◽  
Bruno Dias ◽  
Leandro de O Kerber ◽  
Andrés E Piatti ◽  
...  

ABSTRACT We provide a homogeneous set of structural parameters of 83 star clusters located at the periphery of the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC). The clusters’ stellar density and surface brightness profiles were built from deep, AO assisted optical images, and uniform analysis techniques. The structural parameters were obtained from King and Elson et al. model fittings. Integrated magnitudes and masses (for a subsample) are also provided. The sample contains mostly low surface brightness clusters with distances between 4.5 and 6.5 kpc and between 1 and 6.5 kpc from the LMC and SMC centres, respectively. We analysed their spatial distribution and structural properties, comparing them with those of inner clusters. Half-light and Jacobi radii were estimated, allowing an evaluation of the Roche volume tidal filling. We found that: (i) for our sample of LMC clusters, the tidal radii are, on average, larger than those of inner clusters from previous studies; (ii) the core radii dispersion tends to be greater for LMC clusters located towards the southwest, with position angles of ∼200° and about ∼5° from the LMC centre, i.e. those LMC clusters nearer to the SMC; (iii) the core radius evolution for clusters with known age is similar to that of inner clusters; (iv) SMC clusters with galactocentric distances closer than 4 kpc are overfilling; (v) the recent Clouds collision did not leave marks on the LMC clusters’ structure that our analysis could reveal.


2012 ◽  
Vol 8 (S289) ◽  
pp. 116-125 ◽  
Author(s):  
G. Bono ◽  
L. Inno ◽  
N. Matsunaga ◽  
K. Genovali ◽  
B. Lemasle ◽  
...  

AbstractWe present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical–NIR period–Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud—(m − M)0 = 18.48 ± 0.01 ± 0.10 mag—and the Small Magellanic Cloud—(m − M)0 = 18.94 ± 0.01 ± 0.10 mag—agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids.


2009 ◽  
Vol 5 (S266) ◽  
pp. 446-446
Author(s):  
Arūnas Kučinskas ◽  
Vidas Dobrovolskas ◽  
Algimantas Černiauskas ◽  
Roma Lazauskaitė ◽  
Toshihiko Tanabé

AbstractWe derive photometric metallicities for 56 intermediate-age and old star clusters in the Large Magellanic Cloud from the slopes of their red-giant branches in near-infrared color–magnitude diagrams (CMDs). The cluster sample covers the LMC bar and disk to a distance of ~2 kpc from the LMC center. The derived cluster metallicity distribution spans a range of [Fe/H] = +0.0 . . . 1.4 and is similar to the metallicity distribution of field stars. We find that the average cluster metallicities in certain fields of the LMC bar and disk may be different, but there seems to be no compelling evidence for a global cluster metallicity gradient in the LMC.


1991 ◽  
Vol 148 ◽  
pp. 205-206 ◽  
Author(s):  
A. Krabbe ◽  
J. Storey ◽  
V. Rotaciuc ◽  
S. Drapatz ◽  
R. Genzel

Images with subarcsec spatial resolution in the light of near-infrared atomic (Bry) and molecular hydrogen H2 (S(1) v=1-0) emission lines were obtained for some extended, pointlike objects in the Large Magellanic Cloud (LMC) for the first time. We used the Max-Planck-Institut für extraterrestrische Physik (MPE) near-infrared array spectrometer FAST (image scale 0.8”/pix, spectral resolving power 950) at the ESO/MPI 2.2m telescope, La Silla. We present some results on the 30-Dor complex and N159A5.


2011 ◽  
Vol 729 (2) ◽  
pp. 78 ◽  
Author(s):  
Bradley C. Whitmore ◽  
Rupali Chandar ◽  
Hwihyun Kim ◽  
Catherine Kaleida ◽  
Max Mutchler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document