scholarly journals ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY

2009 ◽  
Vol 708 (1) ◽  
pp. 137-157 ◽  
Author(s):  
A. Merloni ◽  
A. Bongiorno ◽  
M. Bolzonella ◽  
M. Brusa ◽  
F. Civano ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
S. Komossa

Supermassive black holes (SMBHs) may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN). Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.


2014 ◽  
Vol 10 (S312) ◽  
pp. 75-76
Author(s):  
H. Liu ◽  
W. Yuan ◽  
H. Zhou ◽  
X.-B. Dong

AbstractWe report on the progress of our on-going work to search for low-mass black holes (LMBHs) in active galactic nuclei. The masses of black holes are estimated using the broad line width and luminosity obtained from one-epoch optical spectra. As the first step, we fitted the spectra of 1263 objects in the quasar catalog of the SDSS DR10 and obtained accurate measurement of the emission lines. Two AGNs are found to have MBH ~ 106 M⊙. The next step is to analyze the spectra of the DR10 galaxy sample, from which a much larger sample of low-mass AGNs is expected to be obtained.


2020 ◽  
Vol 635 ◽  
pp. A1 ◽  
Author(s):  
Andjelka B. Kovačević ◽  
Jian-Min Wang ◽  
Luka Č. Popović

Context. An unresolved region in the relative vicinity of the event horizon of a supermassive black holes (SMBH) in active galactic nuclei (AGN) radiates strongly variable optical continuum and broad-line emission flux. These fluxes can be processed into two-dimensional transfer functions (2DTF) of material flows that encrypt various information about these unresolved structures. An intense search for kinematic signatures of reverberation mapping of close binary SMBH (SMBBH) is currently ongoing. Aims. Elliptical SMBBH systems (i.e. both orbits and disc-like broad-line regions (BLR) are elliptic) have not been assessed in 2DTF studies. We aim to numerically infer such a 2DTF because the geometry of the unresolved region is imprinted on their optical emission. Through this, we determine their specific kinematical signatures. Methods. We simulated the geometry and kinematics of SMBBH whose components are on elliptical orbits. Each SMBH had a disc-like elliptical BLR. The SMBHs were active and orbited each other tightly at a subparsec distance. Results. Here we calculate for the first time 2DTF, as defined in the velocity-time delay plane, for several elliptical configurations of SMBBH orbits and their BLRs. We find that these very complex configurations are clearly resolved in maps. These results are distinct from those obtained from circular and disc-wind geometry. We calculate the expected line variability for all SMBBH configurations. We show that the line shapes are influenced by the orbital phase of the SMBBH. Some line profiles resemble observed profiles, but they can also be much deformed to look like those from the disc-wind model. Conclusions. First, our results imply that using our 2DTF, we can detect and quantify kinematic signatures of elliptical SMBBH. Second, the calculated expected line profiles share some intriguing similarities with observed profiles, but also with some profiles that are synthesised in disc-wind models. To overcome the non-uniqueness of the spectral line shapes as markers of SMBBH, they must be accompanied with 2DTF.


2008 ◽  
Vol 135 (3) ◽  
pp. 928-946 ◽  
Author(s):  
Jiajian Shen ◽  
Daniel E. Vanden Berk ◽  
Donald P. Schneider ◽  
Patrick B. Hall

2019 ◽  
Vol 489 (1) ◽  
pp. 1373-1378 ◽  
Author(s):  
Kastytis Zubovas ◽  
Andrew King

Abstract Active galactic nuclei (AGNs) probably control the growth of their host galaxies via feedback in the form of wide-angle wind-driven outflows. These establish the observed correlations between supermassive black hole (SMBH) masses and host galaxy properties, e.g. the spheroid velocity dispersion σ. In this paper we consider the growth of the SMBH once it starts driving a large-scale outflow through the galaxy. To clear the gas and ultimately terminate further growth of both the SMBH and the host galaxy, the black hole must continue to grow its mass significantly, by up to a factor of a few, after reaching this point. The mass increment ΔMBH depends sensitively on both galaxy size and SMBH spin. The galaxy size dependence leads to ΔMBH ∝ σ5 and a steepening of the M–σ relation beyond the analytically calculated M ∝ σ4, in agreement with observation. Slowly spinning black holes are much less efficient in producing feedback, so at any given σ the slowest spinning black holes should be the most massive. Current observational constraints are consistent with this picture, but insufficient to test it properly; however, this should change with upcoming surveys.


2020 ◽  
Vol 500 (4) ◽  
pp. 4788-4800
Author(s):  
Luca Sala ◽  
Elia Cenci ◽  
Pedro R Capelo ◽  
Alessandro Lupi ◽  
Massimo Dotti

ABSTRACT Active galactic nuclei (AGNs) are massive black holes (BHs) caught in the act of accreting gas at the centre of their host galaxies. Part of the accreting mass is converted to energy and released into the surrounding medium, in a process loosely referred to as AGN feedback. Most numerical simulations include AGN feedback as a sub-grid model, wherein energy or momentum (or both) is coupled to the nearby gas. In this work, we implement a new momentum-driven model in the hydrodynamics code gizmo, in which accretion from large scales is mediated by a sub-grid accretion disc model, and gas particles are stochastically kicked over a bi-conical region, to mimic observed kinetic winds. The feedback cone’s axis can be set parallel either to the angular momentum of the gas surrounding the BH or to the BH spin direction, which is self-consistently evolved within the accretion-disc model. Using a circumnuclear disc (CND) as a test bed, we find that (i) the conical shape of the outflow is always visible and is weakly dependent on the launching orientation and aperture, resulting in comparable mass inflows and outflows; (ii) the cone’s orientation is also similar amongst our tests, and it is not always the same as the initial value, due to the interaction with the CND playing a crucial role in shaping the outflow; and (iii) the velocity of the outflow, instead, differs and strongly depends on the interplay with the CND.


Sign in / Sign up

Export Citation Format

Share Document