scholarly journals ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA

2011 ◽  
Vol 741 (2) ◽  
pp. 82 ◽  
Author(s):  
Todd A. Thompson
2017 ◽  
Vol 26 (09) ◽  
pp. 1750097 ◽  
Author(s):  
Xiangyun Fu ◽  
Pengcheng Li

In this paper, we perform a cosmological model-independent test of the cosmic distance–duality relation (CDDR) in terms of the ratio of angular diameter distance (ADD) [Formula: see text] from strong gravitational lensing (SGL) and the ratio of luminosity distance (LD) [Formula: see text] obtained from the joint of type Ia supernovae (SNIa) Union2.1 compilation and the latest Gamma-Ray Bursts (GRBs) data, where the superscripts s and l correspond to the redshifts [Formula: see text] and [Formula: see text] at the source and lens from SGL samples. The purpose of combining GRB data with SNIa compilation is to test CDDR in a wider redshift range. The LD associated with the redshifts of the observed ADD is obtained through two cosmological model-independent methods, namely, method A: binning the SNIa+GRBs data, and method B: reconstructing the function of DL by combining the Crossing Statistic with the smoothing method. We find that CDDR is compatible with the observations at [Formula: see text] confidence level for the power law model which is assumed to describe the mass distribution of lensing systems with method B in a wider redshift range.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Xiangyun Fu ◽  
Jianfei Yang ◽  
Zhaoxia Chen ◽  
Lu Zhou ◽  
Jun Chen

AbstractIn this work, using the Gaussian process, we explore the potentiality of future gravitational wave (GW) measurements to probe cosmic opacity at high redshifts through comparing its opacity-free luminosity distance (LD) with the opacity-dependent one from the combination of Type Ia supernovae (SNIa) and gamma-ray bursts (GRBs). The GW data, SNIa and GRB data are simulated from the measurements of the future Einstein Telescope, the actual Pantheon compilation and the latest observation of GRBs compiled by Amati et al, respectively. A nonparametric method is proposed to probe the spatial homogeneity of cosmic transparency at high redshift by comparing the LD reconstructed from the GW data with that reconstructed from the Pantheon and GRB data. In addition, the cosmic opacity is tested by using the parametrization for the optical depth, and the results show that the constraints on cosmic opacity are more stringent than the previous ones. It shows that the future GW measurements may be used as an important tool to probe the cosmic opacity in the high redshift region.


2020 ◽  
Vol 494 (2) ◽  
pp. 2886-2904 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Tomotsugu Goto ◽  
Ting-Wen Wang ◽  
Seong Jin Kim ◽  
Simon C-C Ho ◽  
...  

ABSTRACT Fast radio bursts (FRBs) are mysterious radio bursts with a time-scale of approximately milliseconds. Two populations of FRB, namely repeating and non-repeating FRBs, are observationally identified. However, the differences between these two and their origins are still cloaked in mystery. Here we show the time-integrated luminosity–duration (Lν–wint, rest) relations and luminosity functions (LFs) of repeating and non-repeating FRBs in the FRB Catalogue project. These two populations are obviously separated in the Lν-wint, rest plane with distinct LFs, i.e. repeating FRBs have relatively fainter Lν and longer wint, rest with a much lower LF. In contrast with non-repeating FRBs, repeating FRBs do not show any clear correlation between Lν and wint, rest. These results suggest essentially different physical origins of the two. The faint ends of the LFs of repeating and non-repeating FRBs are higher than volumetric occurrence rates of neutron star (NS) mergers and accretion-induced collapse (AIC) of white dwarfs (WDs), and are consistent with those of soft gamma-ray repeaters (SGRs), Type Ia supernovae (SNe Ia), magnetars, and WD mergers. This indicates two possibilities: either (i) faint non-repeating FRBs originate in NS mergers or AIC and are actually repeating during the lifetime of the progenitor, or (ii) faint non-repeating FRBs originate in any of SGRs, SNe Ia, magnetars, and WD mergers. The bright ends of LFs of repeating and non-repeating FRBs are lower than any candidates of progenitors, suggesting that bright FRBs are produced from a very small fraction of the progenitors regardless of the repetition. Otherwise, they might originate in unknown progenitors.


1990 ◽  
Vol 360 ◽  
pp. 626 ◽  
Author(s):  
Adam Burrows ◽  
Lih-Sin The

2013 ◽  
Vol 778 (2) ◽  
pp. L37 ◽  
Author(s):  
Doron Kushnir ◽  
Boaz Katz ◽  
Subo Dong ◽  
Eli Livne ◽  
Rodrigo Fernández

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jun-Jie Wei ◽  
Qing-Bo Ma ◽  
Xue-Feng Wu

We update gamma-ray burst (GRB) luminosity relations among certain spectral and light-curve features with 139 GRBs. The distance modulus of 82 GRBs atz>1.4can be calibrated with the sample atz≤1.4by using the cubic spline interpolation method from the Union2.1 Type Ia supernovae (SNe Ia) set. We investigate the joint constraints on the Cardassian expansion model and dark energy with 580 Union2.1 SNe Ia sample(z<1.4)and 82 calibrated GRBs’ data(1.4<z≤8.2). In ΛCDM, we find that adding 82 high-zGRBs to 580 SNe Ia significantly improves the constraint onΩm-ΩΛplane. In the Cardassian expansion model, the best fit isΩm=0.24-0.15+0.15andn=0.16-0.52+0.30  (1σ), which is consistent with the ΛCDM cosmology(n=0)in the1σconfidence region. We also discuss two dark energy models in which the equation of statew(z)is parameterized asw(z)=w0andw(z)=w0+w1z/(1+z), respectively. Based on our analysis, we see that our universe at higher redshift up toz=8.2is consistent with the concordance model within1σconfidence level.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550057 ◽  
Author(s):  
Xuheng Ding ◽  
Zhengxiang Li ◽  
Zong-Hong Zhu

Gamma-ray bursts (GRBs), have been widely used as distance indicators to measure the cosmic expansion and explore the nature of dark energy. A popular method adopted in previous works is to calibrate the luminosity relations which are responsible for distance estimation of GRBs with more primary (low redshift) cosmic distance ladder objects, type Ia supernovae (SNe Ia). Since distances of SNe Ia in all SN Ia samples used to calibrate GRB luminosity relations were usually derived from the global fit in a specific cosmological model, the distance of GRB at a given redshift calibrated with matching SNe Ia was still cosmological-model-dependent. In this paper, we first directly determine the distances of SNe Ia with the Angular Diameter Distances (ADDs) of galaxy clusters without any assumption for the background of the universe, and then calibrate GRB luminosity relations with our cosmology-independent distances of SNe Ia. The results suggest that, compared to the previous original manner where distances of SNe Ia used as calibrators are determined from the global fit in a particular cosmological model, our treatments proposed here yield almost the same calibrations of GRB luminosity relations and the cosmological implications of them do not suffer any circularity.


Sign in / Sign up

Export Citation Format

Share Document