redshift range
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 40)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Vol 922 (1) ◽  
pp. 6
Author(s):  
Jounghun Lee ◽  
Jun-Sung Moon ◽  
Suho Ryu ◽  
Suk-Jin Yoon

Abstract A numerical detection of the mass-dependent spin transition of the galaxies is presented. Analyzing a sample of the galaxies with stellar masses in the range of 109 < (M ⋆/M ⊙) ≤ 1011 from the IllustrisTNG300-1 simulations, we explore the alignment tendency between the galaxy baryon spins and the three eigenvectors of the linearly reconstructed tidal field as a function of M ⋆ and its evolution in the redshift range of 0 ≤ z ≤ 1.5. Detecting a significant signal of the occurrence of the mass-dependent transition of the galaxy spins, we show that the centrals differ from the satellites in their spin transition type. As M ⋆ increases beyond a certain threshold mass, the preferred directions of the central galaxy spins transit from the minor to the intermediate tidal eigenvectors (type two) at z = 0.5 and 1, while those of the satellites transit from the minor to the major tidal eigenvectors (type one) at z = 1 and 1.5. It is also shown that the mass range and type of the spin transition depend on the galaxy morphology, the degree of the alignments between the baryon and total spin vectors, and the environmental density. Meanwhile, the stellar spins of the galaxies are found to yield a weak signal of the T1 transitions at z = 0, whose strength and trend depend on the degree of the alignments between the stellar and baryon spins. The possible mechanisms responsible for the T1 and T2 spin transitions are discussed.


2021 ◽  
Vol 922 (1) ◽  
pp. 42
Author(s):  
Masoud Rafiei-Ravandi ◽  
Kendrick M. Smith ◽  
Dongzi Li ◽  
Kiyoshi W. Masui ◽  
Alexander Josephy ◽  
...  

Abstract The CHIME/FRB Project has recently released its first catalog of fast radio bursts (FRBs), containing 492 unique sources. We present results from angular cross-correlations of CHIME/FRB sources with galaxy catalogs. We find a statistically significant (p-value ∼ 10−4, accounting for look-elsewhere factors) cross-correlation between CHIME FRBs and galaxies in the redshift range 0.3 ≲ z ≲ 0.5, in three photometric galaxy surveys: WISE × SCOS, DESI-BGS, and DESI-LRG. The level of cross-correlation is consistent with an order-one fraction of the CHIME FRBs being in the same dark matter halos as survey galaxies in this redshift range. We find statistical evidence for a population of FRBs with large host dispersion measure (∼400 pc cm−3) and show that this can plausibly arise from gas in large halos (M ∼ 1014 M ⊙), for FRBs near the halo center (r ≲ 100 kpc). These results will improve in future CHIME/FRB catalogs, with more FRBs and better angular resolution.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Dong Zhao ◽  
Jun-Qing Xia

AbstractWe test the cosmic anisotropy in the dipole-modulated $$\Lambda $$ Λ CDM model and Finslerian cosmological model with the recently-released quasar sample. Based on the redshift tomographic method, the quasar sample is divided into two subsets $$z \le z_{cut}$$ z ≤ z cut and $$z > z_{cut}$$ z > z cut by different cutting redshifts. The dipole amplitudes of the two cosmological models from the subsets $$z \le z_{cut}$$ z ≤ z cut are very weak. We find that quasars at a higher redshift range may provide more detailed information about the dipole amplitude $$A_D$$ A D . The dipole directions of each cosmological model from the subsets $$z \le 1.1$$ z ≤ 1.1 and $$z > 1.1$$ z > 1.1 are deviated by $$1\sigma $$ 1 σ level. The Pantheon sample is combined with the two subsets. The dipole amplitude from the two combined datasets is also very weak. In the dipole-modulated $$\Lambda $$ Λ CDM model, the dipole direction from the combined dataset quasar at $$z \le 1.1$$ z ≤ 1.1 and Pantheon sample is far away from the one given by the Pantheon sample. In the Finslerian cosmological model, the dipole directions from the two combined datasets are close to the one in the Pantheon sample.


2021 ◽  
Vol 508 (2) ◽  
pp. 1701-1718
Author(s):  
Tony Dalton ◽  
Simon L Morris ◽  
Michele Fumagalli ◽  
Efrain Gatuzz

ABSTRACT We use Swift blazar spectra to estimate the key intergalactic medium (IGM) properties of hydrogen column density ($\mathit {N}\small {\rm HXIGM}$), metallicity, and temperature over a redshift range of 0.03 ≤ z ≤ 4.7, using a collisional ionization equilibrium model for the ionized plasma. We adopted a conservative approach to the blazar continuum model given its intrinsic variability and use a range of power-law models. We subjected our results to a number of tests and found that the $\mathit {N}\small {\rm HXIGM}$ parameter was robust with respect to individual exposure data and co-added spectra for each source, and between Swift and XMM–Newton source data. We also found no relation between $\mathit {N}\small {\rm HXIGM}$ and variations in source flux or intrinsic power laws. Though some objects may have a bulk Comptonization component that could mimic absorption, it did not alter our overall results. The $\mathit {N}\small {\rm HXIGM}$ from the combined blazar sample scales as (1 + z)1.8 ± 0.2. The mean hydrogen density at z = 0 is n0 = (3.2 ± 0.5) × 10−7 cm−3. The mean IGM temperature over the full redshift range is log(T/K) =6.1 ± 0.1, and the mean metallicity is [X/H] = −1.62 ± 0.04(Z ∼ 0.02). When combining with the results with a gamma-ray burst (GRB) sample, we find the results are consistent over an extended redshift range of 0.03 ≤ z ≤ 6.3. Using our model for blazars and GRBs, we conclude that the IGM contributes substantially to the total absorption seen in both blazar and GRB spectra.


Author(s):  
Janakee Raste ◽  
Girish Kulkarni ◽  
Laura C Keating ◽  
Martin G Haehnelt ◽  
Jonathan Chardin ◽  
...  

Abstract Our understanding of the intergalactic medium at redshifts z = 5–6 has improved considerably in the last few years due to the discovery of quasars with z &gt; 6 that enable Lyman-α forest studies at these redshifts. A realisation from this has been that hydrogen reionization could end much later than previously thought, so that large “islands” of cold, neutral hydrogen could exist in the IGM at redshifts z = 5–6. By using radiative transfer simulations of the IGM, we consider the implications of the presence of these neutral hydrogen islands for the 21-cm power spectrum signal and its potential detection by experiments such as hera, ska, lofar, and mwa. In contrast with previous models of the 21-cm signal, we find that thanks to the late end of reionization the 21-cm power in our simulation continues to be as high as $\Delta ^2_{21}=10~\mathrm{mK}^2$ at k ∼ 0.1 h cMpc−1 at z = 5–6. This value of the power spectrum is several orders of magnitude higher than that in conventional models considered in the literature for these redshifts. Such high values of the 21-cm power spectrum should be detectable by hera and ska1-low in ∼1000 hours, assuming optimistic foreground subtraction. This redshift range is also attractive due to relatively low sky temperature and potentially greater abundance of multiwavelength data.


2021 ◽  
Vol 5 (2) ◽  
pp. 1-10
Author(s):  
Mariwan Ahmed Rasheed ◽  
Khalid K. Mohammad

In the present work, the galaxy luminosity function (LF) has been studied for a sample of seven clusters in the redshift range (0.0 ≲ z ≲ 0.1), within Abell radius (1.5 h−1 Mpc), in the five SDSS passbands ugriz. In each case, the absolute magnitude distribution is found and then fitted with a Schechter function. The fitting is done, using the χ2 – minimization method to find the best values of Schechter parameters Ф* (normalization constant), M* (characteristic absolute magnitude), and α (faint-end slope). No remarkable changes are found in the values of M* and α, for any cluster, in any passband. Furthermore, the LF does not seem to vary with such cluster parameters as richness, velocity dispersion, and Bautz–Morgan morphology. Finally, it is found that M* becomes brighter toward redder bands, whereas almost no variation is seen in the value of α with passband, being around (−1.00).


Author(s):  
Fabio Fontanot ◽  
Antonello Calabró ◽  
Margherita Talia ◽  
Filippo Mannucci ◽  
Marco Castellano ◽  
...  

Abstract In this work, we study the evolution of the mass-metallicity relations (MZRs) as predicted by the GAlaxy Evolution and Assembly (gaea) semi-analytic model. We contrast these predictions with recent results from the VANDELS survey, that allows us to expand the accessible redshift range for the stellar MZR up to z ∼ 3.5. We complement our study by considering the evolution of the gas-phase MZR in the same redshift range. We show that gaea is able to reproduce the observed evolution of the z &lt; 3.5 gas-phase MZR and z &lt; 0.7 stellar MZR, while it overpredicts the stellar metallicity at z ∼ 3.5. Furthermore, gaea also reproduces the so-called fundamental metallicity relation (FMR) between gas-phase metallicity, stellar mass and star formation rate (SFR). In particular, the gas-phase FMR in gaea is already in place at z ∼ 5 and shows almost no evolution at lower redshift. gaea predicts the existence of a stellar FMR, that is, however, characterized by a relevant redshift evolution, although its shape follows closely the gas-phase FMR. We also report additional unsolved tensions between model and data: the overall normalization of the predicted MZR agrees with observations only within ∼0.1 dex; the largest discrepancies are seen at z ∼ 3.5 where models tend to slightly overpredict observed metallicities; the slope of the predicted MZR at fixed SFR is too steep below a few M⊙ yr−1. Finally, we provide model predictions for the evolution of the MZRs at higher redshifts, that would be useful in the context of future surveys, like those that will be performed with JWST.


2021 ◽  
Vol 504 (1) ◽  
pp. 33-52
Author(s):  
Gong-Bo Zhao ◽  
Yuting Wang ◽  
Atsushi Taruya ◽  
Weibing Zhang ◽  
Héctor Gil-Marín ◽  
...  

ABSTRACT We perform a joint BAO and RSD analysis using the eBOSS DR16 LRG and ELG samples in the redshift range of z ∈ [0.6, 1.1], and detect an RSD signal from the cross-power spectrum at a ∼4σ confidence level, i.e., fσ8 = 0.317 ± 0.080 at zeff = 0.77. Based on the chained power spectrum, which is a new development in this work to mitigate the angular systematics, we measure the BAO distances and growth rate simultaneously at two effective redshifts, namely, DM/rd (z = 0.70) = 17.96 ± 0.51, DH/rd (z = 0.70) = 21.22 ± 1.20, fσ8 (z = 0.70) = 0.43 ± 0.05, and DM/rd (z = 0.845) = 18.90 ± 0.78, DH/rd (z = 0.845) = 20.91 ± 2.86, fσ8 (z = 0.845) = 0.30 ± 0.08. Combined with BAO measurements including those from the eBOSS DR16 QSO and Lyman-α sample, our measurement has raised the significance level of a non-zero ΩΛ to ∼11σ. The data product of this work is publicly available at https://github.com/icosmology/eBOSS_DR16_LRGxELG and https://www.sdss.org/science/final-bao-and-rsd-measurements/.


Author(s):  
D J McLeod ◽  
R J McLure ◽  
J S Dunlop ◽  
F Cullen ◽  
A C Carnall ◽  
...  

Abstract We present a new determination of the galaxy stellar mass function (GSMF) over the redshift interval 0.25 ≤ z ≤ 3.75, derived from a combination of ground-based and Hubble Space Telescope (HST) imaging surveys. Based on a near-IR selected galaxy sample selected over a raw survey area of 3 deg2 and spanning ≥4 dex in stellar mass, we fit the GSMF with both single and double Schechter functions, carefully accounting for Eddington bias to derive both observed and intrinsic parameter values. We find that a double Schechter function is a better fit to the GSMF at all redshifts, although the single and double Schechter function fits are statistically indistinguishable by z = 3.25. We find no evidence for significant evolution in M⋆, with the intrinsic value consistent with $\log _{10}(M^{\star }/{\rm \, M_{\odot }})=10.55\pm {0.1}$ over the full redshift range. Overall, our determination of the GSMF is in good agreement with recent simulation results, although differences persist at the highest stellar masses. Splitting our sample according to location on the UVJ plane, we find that the star-forming GSMF can be adequately described by a single Schechter function over the full redshift range, and has not evolved significantly since z ≃ 2.5. In contrast, both the normalization and functional form of the passive GSMF evolves dramatically with redshift, switching from a single to a double Schechter function at z ≤ 1.5. As a result, we find that while passive galaxies dominate the integrated stellar-mass density at z ≤ 0.75, they only contribute ≲ 10% by z ≃ 3. Finally, we provide a simple parameterization that provides an accurate estimate of the GSMF, both observed and intrinsic, at any redshift within the range 0 ≤ z ≤ 4.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150049
Author(s):  
Abdulla Al Mamon

In this paper, we reconstruct the late-time cosmological dynamics using a purely kinematic approach. In particular, considering a divergence-free parametrization for deceleration parameter [Formula: see text], we first derive the jerk parameter [Formula: see text] and then confront it with combination of various cosmological datasets. We use the most recent observational datasets consisting of the 1048 Pantheon Supernovae Ia data points in the redshift range [Formula: see text], the 51 data points of observational Hubble parameter (OHD) measurements in the redshift range [Formula: see text], the Hubble constant [Formula: see text] (R19) and the CMB shift parameter measurements. We study the evolution of different cosmological quantities for the present model and compare it with the concordance [Formula: see text]CDM model. We find that only the combined Pantheon+OHD+R19 data shows good agreement with the [Formula: see text]CDM [Formula: see text] model within [Formula: see text] confidence region. We also find that our model successfully generates late time cosmic acceleration along with a decelerated expansion in the past.


Sign in / Sign up

Export Citation Format

Share Document