scholarly journals BANYAN. III. RADIAL VELOCITY, ROTATION, AND X-RAY EMISSION OF LOW-MASS STAR CANDIDATES IN NEARBY YOUNG KINEMATIC GROUPS

2014 ◽  
Vol 788 (1) ◽  
pp. 81 ◽  
Author(s):  
Lison Malo ◽  
Étienne Artigau ◽  
René Doyon ◽  
David Lafrenière ◽  
Loïc Albert ◽  
...  
Keyword(s):  
X Ray ◽  
2016 ◽  
Vol 819 (1) ◽  
pp. 60 ◽  
Author(s):  
F. Yusef-Zadeh ◽  
M. Wardle ◽  
R. Schödel ◽  
D. A. Roberts ◽  
W. Cotton ◽  
...  
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2005 ◽  
Vol 49 (2) ◽  
pp. 109-126 ◽  
Author(s):  
E. A. Antokhina ◽  
A. M. Cherepashchuk ◽  
V. V. Shimanskii

1996 ◽  
Vol 165 ◽  
pp. 29-41
Author(s):  
Philipp Podsiadlowski

Thorne-Żytkow objects (TŻOs) are red supergiants with neutron cores. The energy source in TŻOs with low-mass envelopes (≲8 M⊙) is accretion onto the neutron core, while for TŻOs with massive envelopes (≲14 M⊙) it is nuclear burning via the exotic rp process. TŻOs are expected to form as a result of unstable mass transfer in high-mass X-ray binaries, the direct collision of a neutron star with a massive companion after a supernova or the collision of a neutron star with a low-mass star in a globular cluster. We estimate a birth rate of massive TŻOs in the Galaxy of ∼2 10−4 yr−1. Thus, for a characteristic TŻO lifetime of 105–106 yr there should be 20–200 TŻOs in the Galaxy at present. These can be distinguished from ordinary red supergiants because of anomalously high surface abundances of lithium and rp-process elements, produced in the TŻO interior. The TŻO phase ends when either the star has exhausted its rp-process seed elements or the envelope mass decreases below a critical mass (∼14 M⊙). Then nuclear burning becomes inefficient and a neutrino runaway ensues, leading to the dynamical accretion of matter near the core onto the neutron star and its spin up to spin frequencies of up to ∼100 Hz. The fate of the massive envelope is not entirely clear. If a significant fraction can be accreted onto the core, the formation of a black hole becomes likely. Part of the envelope may collapse into a massive disk which may ultimately become gravitationally unstable and lead to the formation of planets or even low-mass stars. We discuss the various possible outcomes and suggest a possible link between massive TŻOs and soft X-ray transients.


1995 ◽  
Vol 163 ◽  
pp. 245-247
Author(s):  
V.S. Niemela ◽  
R.H. Barbá ◽  
M.M. Shara

Spectral observations of the WN3p star WR46 (HD 104994) obtained during June 1993 and January/February 1994 display large amplitude radial velocity variations of the strong emission lines Nv 4603-19Å and HeII 4686A, on a time scale of a fraction of a day. The most probable period found is 0.311 d, similar to the photometric period found by previous authors. The amplitude of the radial velocity variations of Nv emission is almost twice that of HeII. Noting the similarity of WR46 with low mass X-ray binaries, we suggest that the emission line spectrum corresponds to that of a luminous accretion disk in an evolved binary system.


1982 ◽  
Vol 253 ◽  
pp. 756 ◽  
Author(s):  
J. R. Thorstensen ◽  
P. A. Charles
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 498 (3) ◽  
pp. 3658-3663
Author(s):  
S Lalitha ◽  
J H M M Schmitt ◽  
K P Singh ◽  
P C Schneider ◽  
R O Parke Loyd ◽  
...  

ABSTRACT Our nearest stellar neighbour, Proxima Centauri, is a low-mass star with spectral type dM5.5 and hosting an Earth-like planet orbiting within its habitable zone. However, the habitability of the planet depends on the high-energy radiation of the chromospheric and coronal activity of the host star. We report the AstroSat, Chandra, and HST observation of Proxima Centauri carried out as part of the multiwavelength simultaneous observational campaign. Using the soft X-ray data, we probe the different activity states of the star. We investigate the coronal temperatures, emission measures and abundance. Finally, we compare our results with earlier observations of Proxima Centauri.


2020 ◽  
Vol 497 (1) ◽  
pp. 1015-1019
Author(s):  
G Foster ◽  
K Poppenhaeger ◽  
J D Alvarado-Gómez ◽  
J H M M Schmitt

ABSTRACT The low-mass star GJ 1151 has been reported to display variable low-frequency radio emission, which has been interpreted as a signpost of coronal star–planet interactions with an unseen exoplanet. Here we report the first X-ray detection of GJ 1151’s corona based on the XMM–Newton data. We find that the star displays a small flare during the X-ray observation. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of LX = 5.5 × 1026 erg s−1. During the quiescent time periods excluding the flare, the star remains undetected with an upper limit of $L_{\mathrm{ X},\, \mathrm{ qui}} \le 3.7\times 10^{26}$ erg s−1. This is compatible with the coronal assumptions used in a recently published model for a star–planet interaction origin of the observed radio signals from this star.


2019 ◽  
Vol 491 (1) ◽  
pp. 560-575 ◽  
Author(s):  
L N Driessen ◽  
I McDonald ◽  
D A H Buckley ◽  
M Caleb ◽  
E J Kotze ◽  
...  

ABSTRACT We report the discovery of the first transient with MeerKAT, MKT J170456.2–482100, discovered in ThunderKAT images of the low-mass X-ray binary GX339–4. MKT J170456.2–482100 is variable in the radio, reaching a maximum flux density of $0.71\pm 0.11\, \mathrm{mJy}$ on 2019 October 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2–482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and $\sim 18\, \mathrm{yr}$ of archival optical photometry of the star shows that it varies with a period of $21.25\pm 0.04\, \mathrm{d}$. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2–482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of $43\, \mathrm{km\, s^{-1}}$. We also observe a spectral feature in antiphase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of $\sim 12\pm 10\, \mathrm{km\, s^{-1}}$, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2–482100 system.


2019 ◽  
Vol 492 (2) ◽  
pp. 1761-1769 ◽  
Author(s):  
Monika Lendl ◽  
François Bouchy ◽  
Samuel Gill ◽  
Louise D Nielsen ◽  
Oliver Turner ◽  
...  

ABSTRACT We report the period, eccentricity, and mass determination for the Transiting Exoplanet Survey Satellite (TESS) single-transit event candidate TOI-222, which displayed a single 3000 ppm transit in the TESS 2-min cadence data from Sector 2. We determine the orbital period via radial velocity measurements (P = 33.9 d), which allowed for ground-based photometric detection of two subsequent transits. Our data show that the companion to TOI-222 is a low-mass star, with a radius of $0.18_{-0.10}^{+0.39}$ R⊙ and a mass of 0.23 ± 0.01 M⊙. This discovery showcases the ability to efficiently discover long-period systems from TESS single-transit events using a combination of radial velocity monitoring coupled with high-precision ground-based photometry.


Sign in / Sign up

Export Citation Format

Share Document