scholarly journals SPATIAL VARIATIONS IN THE SPECTRAL INDEX OF POLARIZED SYNCHROTRON EMISSION IN THE 9 yrWMAPSKY MAPS

2014 ◽  
Vol 790 (2) ◽  
pp. 104 ◽  
Author(s):  
U. Fuskeland ◽  
I. K. Wehus ◽  
H. K. Eriksen ◽  
S. K. Næss
1998 ◽  
Vol 184 ◽  
pp. 351-352 ◽  
Author(s):  
P. Hoernes ◽  
R. Beck ◽  
E.M. Berkhuijsen

At the centre of M31 the nonthermal spectral index between λ20 cm and λ6 cm is −0.2. It slowly decreases along the southern arm and the northern filaments visible in Hα, but perpendicular to these features it increases much faster. The magnetic field runs along the arm and the filaments. These phenomena suggest the existence of a mono-energetic source of relativistic electrons in the nucleus.


2002 ◽  
Vol 199 ◽  
pp. 309-310
Author(s):  
X.Z. Zhang ◽  
L.A. Higgs ◽  
T.L. Landecker ◽  
S.J. Qian ◽  
X.J. Wu

Radio observational results at 232 MHz and multifrequency studies of supernova remnant (SNR) HB21 are presented in this paper. Both the integrated spectral index and the spatial variations of spectral index of the remnant were calculated by combining the new map at 232 MHz with previously published maps made at 408, 1420, 2695, and 4750 MHz.


2020 ◽  
Vol 636 ◽  
pp. A3 ◽  
Author(s):  
C. Xie ◽  
R. J. van Weeren ◽  
L. Lovisari ◽  
F. Andrade-Santos ◽  
A. Botteon ◽  
...  

Context. Massive merging galaxy clusters often host diffuse megaparsec-scale radio synchrotron emission. This emission originates from relativistic electrons in the ionized intracluster medium. An important question is how these synchrotron emitting relativistic electrons are accelerated. Aims. Our aim is to search for diffuse emission in the Frontier Fields clusters Abell S1063 and Abell 370 and characterize its properties. While these clusters are very massive and well studied at some other wavelengths, no diffuse emission has been reported for these clusters so far. Methods. We obtained 325 MHz Giant Metrewave Radio Telescope (GMRT) and 1–4 GHz Jansky Very Large Array (VLA) observations of Abell S1063 and Abell 370. We complement these data with Chandra and XMM-Newton X-ray observations. Results. In our sensitive images, we discover radio halos in both clusters. In Abell S1063, a giant radio halo is found with a size of ∼1.2 Mpc. The integrated spectral index between 325 MHz and 1.5 GHz is −0.94 ± 0.08 and it steepens to −1.77 ± 0.20 between 1.5 and 3.0 GHz. This spectral steepening provides support for the turbulent reacceleration model for radio halo formation. Abell 370 hosts a faint radio halo mostly centered on the southern part of this binary merging cluster, with a size of ∼500−700 kpc. The spectral index between 325 MHz and 1.5 GHz is −1.10 ± 0.09. Both radio halos follow the known scaling relation between the cluster mass proxy Y500 and radio power, which is consistent with the idea that they are related to ongoing cluster merger events.


1991 ◽  
Vol 144 ◽  
pp. 281-285
Author(s):  
E.R. Seaquist ◽  
Nils Odegard

We report the discovery of radio synchrotron emission from the outflow in M82. The brightness morphology and radio spectral index distribution add new insights into the physical processes and origin of the wind, which are briefly discussed in this paper.


Author(s):  
U. Fuskeland ◽  
K. J. Andersen ◽  
R. Aurlien ◽  
R. Banerji ◽  
M. Brilenkov ◽  
...  

1998 ◽  
Vol 505 (2) ◽  
pp. 473-483 ◽  
Author(s):  
P. Platania ◽  
M. Bensadoun ◽  
M. Bersanelli ◽  
G. De Amici ◽  
A. Kogut ◽  
...  

1990 ◽  
Vol 137 (1) ◽  
pp. 21 ◽  
Author(s):  
M.S. Stern ◽  
P.C. Kendall ◽  
P.W.A. McLlroy

2020 ◽  
Vol 85 ◽  
pp. 131-139
Author(s):  
S Shen ◽  
Y Shimizu

Despite the importance of bacterial cell volume in microbial ecology in aquatic environments, literature regarding the effects of seasonal and spatial variations on bacterial cell volume remains scarce. We used transmission electron microscopy to examine seasonal and spatial variations in bacterial cell size for 18 mo in 2 layers (epilimnion 0.5 m and hypolimnion 60 m) of Lake Biwa, Japan, a large and deep freshwater lake. During the stratified period, we found that the bacterial cell volume in the hypolimnion ranged from 0.017 to 0.12 µm3 (median), whereas that in the epilimnion was less variable (0.016 to 0.033 µm3, median) and much lower than that in the hypolimnion. Additionally, in the hypolimnion, cell volume during the stratified period was greater than that during the mixing period (up to 5.7-fold). These differences in cell volume resulted in comparable bacterial biomass in the hypolimnion and epilimnion, despite the fact that there was lower bacterial abundance in the hypolimnion than in the epilimnion. We also found that the biomass of larger bacteria, which are not likely to be grazed by heterotrophic nanoflagellates, increased in the hypolimnion during the stratified period. Our data suggest that estimation of carbon flux (e.g. bacterial productivity) needs to be interpreted cautiously when cell volume is used as a constant parametric value. In deep freshwater lakes, a difference in cell volume with seasonal and spatial variation may largely affect estimations.


2019 ◽  
Author(s):  
Steven Devaney ◽  
Patric Hendershott ◽  
Angela Black ◽  
Bryan MacGregor

Sign in / Sign up

Export Citation Format

Share Document