radio halos
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 2)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 117
Author(s):  
Sinenhlanhla P. Sikhosana ◽  
Kenda Knowles ◽  
C. H. Ishwara-Chandra ◽  
Matt Hilton ◽  
Kavilan Moodley ◽  
...  

Low frequency radio observations of galaxy clusters are a useful probe of the non-thermal intracluster medium (ICM), through observations of diffuse radio emission such as radio halos and relics. Current formation theories cannot fully account for some of the observed properties of this emission. In this study, we focus on the development of interferometric techniques for extracting extended, faint diffuse emissions in the presence of bright, compact sources in wide-field and broadband continuum imaging data. We aim to apply these techniques to the study of radio halos, relics and radio mini-halos using a uniformly selected and complete sample of galaxy clusters selected via the Sunyaev-Zel’dovich (SZ) effect by the Atacama Cosmology Telescope (ACT) project, and its polarimetric extension (ACTPol). We use the upgraded Giant Metrewave Radio Telescope (uGMRT) for targeted radio observations of a sample of 40 clusters. We present an overview of our sample, confirm the detection of a radio halo in ACT−CL J0034.4+0225, and compare the narrowband and wideband analysis results for this cluster. Due to the complexity of the ACT−CL J0034.4+0225 field, we use three pipelines to process the wideband data. We conclude that the experimental spam wideband pipeline produces the best results for this particular field. However, due to the severe artefacts in the field, further analysis is required to improve the image quality.


2021 ◽  
Author(s):  
◽  
Sara Shakouri

<p>This thesis investigates currently observed correlations between the thermal and non-thermal (radio halos) components of galaxy clusters, and seeks to verify the reliability of the proposed radio halo scaling relations presented in the literature. It employs a two-pronged approach: 1) a statistical examination of 15 galaxy clusters; and 2) detailed multi-wavelength analysis of individual objects of interest.  We first investigated radio data for 15 galaxy clusters drawn from the parent REXCESS sample observed with the ATCA at 1.4 GHz to conduct a radio halo survey. Examination of available and re-processed low resolution images revealed cluster-scale diffuse objects in three clusters. One was a radio halo candidate in Abell 3888 (A3888), with the two remaining diffuse sources being radio relic candidates. Follow-up observations of the candidate clusters were performed in July and December 2011, and March 2012, with the upgraded ATCA (CABB). Radio observations with CABB in different array configurations were used to provide the required resolution and sensitivity to a wider range of angular scales to probe the candidate diffuse sources. Examination of the final CABB images confirmed the existence of the radio halo in A3888; however, the remaining candidates were found to be a head-tail galaxy and a very bright radio galaxy with extended emission. As this thesis presents some of the earliest CABB observations, new data reduction and imaging procedures were necessarily developed and presented here.  The statistical component of this thesis uses a halo sample obtained from the combined detection of this work and the literature to derive new correlations between the cluster observables and the radio halo power. The new correlation between the X-ray luminosity and radio halo power derived here is flatter than the previous correlation in the literature, suggesting that massive clusters may host lower power halos than previously thought. In addition, we derived the upper limits of the undetected power of possible radio halos for our non-halo clusters via injection of fake radio halos into the UV data. Our derived upper limits with respect to the anticipated halo powers according to the previous and new correlations and their interpretations are discussed in the thesis. The distribution of the combined upper limits (this work and the literature) compared to our new correlation shows no sign of the strong bi-modality found in the literature.  As previously mentioned, we detected a giant radio halo in A3888. We observed A3888 with the AAOmega spectrograph to infer the dynamics of the cluster. We measured the spectra of 254 galaxies within a 300 radius from the core of A3888 and combined these data with the available literature redshifts in the region. We identified 71 member galaxies of A3888 and examined the density contours, which indicated that the distribution of the member galaxies is elongated along an east-west axis. This elongation might be indicative of dynamical interactions in the cluster; however, there is no statistically significant deviation from Gaussianity in the velocity data. We then carried out a Lee-Fitchett 3D substructure test and found that A3888 is bimodal and has two subgroups.  The head-tail galaxy mentioned earlier in one of the clusters was originally thought to be a radio relic candidate. Owing to available broadband polarimetric data and well-separated jets of the head-tail galaxy, we investigated the magnetic field direction of the head-tail galaxy and conclude it is highly likely that a helical magnetic field is present in the jets.  We present the high-resolution images of our 15 clusters and create a catalogue of the detected sources. Finally, we discuss concerns with the current radio halo detections in the literature, and how radio halo surveys could be designed in the future to yield unbiased results.</p>


2021 ◽  
Author(s):  
◽  
Sara Shakouri

<p>This thesis investigates currently observed correlations between the thermal and non-thermal (radio halos) components of galaxy clusters, and seeks to verify the reliability of the proposed radio halo scaling relations presented in the literature. It employs a two-pronged approach: 1) a statistical examination of 15 galaxy clusters; and 2) detailed multi-wavelength analysis of individual objects of interest.  We first investigated radio data for 15 galaxy clusters drawn from the parent REXCESS sample observed with the ATCA at 1.4 GHz to conduct a radio halo survey. Examination of available and re-processed low resolution images revealed cluster-scale diffuse objects in three clusters. One was a radio halo candidate in Abell 3888 (A3888), with the two remaining diffuse sources being radio relic candidates. Follow-up observations of the candidate clusters were performed in July and December 2011, and March 2012, with the upgraded ATCA (CABB). Radio observations with CABB in different array configurations were used to provide the required resolution and sensitivity to a wider range of angular scales to probe the candidate diffuse sources. Examination of the final CABB images confirmed the existence of the radio halo in A3888; however, the remaining candidates were found to be a head-tail galaxy and a very bright radio galaxy with extended emission. As this thesis presents some of the earliest CABB observations, new data reduction and imaging procedures were necessarily developed and presented here.  The statistical component of this thesis uses a halo sample obtained from the combined detection of this work and the literature to derive new correlations between the cluster observables and the radio halo power. The new correlation between the X-ray luminosity and radio halo power derived here is flatter than the previous correlation in the literature, suggesting that massive clusters may host lower power halos than previously thought. In addition, we derived the upper limits of the undetected power of possible radio halos for our non-halo clusters via injection of fake radio halos into the UV data. Our derived upper limits with respect to the anticipated halo powers according to the previous and new correlations and their interpretations are discussed in the thesis. The distribution of the combined upper limits (this work and the literature) compared to our new correlation shows no sign of the strong bi-modality found in the literature.  As previously mentioned, we detected a giant radio halo in A3888. We observed A3888 with the AAOmega spectrograph to infer the dynamics of the cluster. We measured the spectra of 254 galaxies within a 300 radius from the core of A3888 and combined these data with the available literature redshifts in the region. We identified 71 member galaxies of A3888 and examined the density contours, which indicated that the distribution of the member galaxies is elongated along an east-west axis. This elongation might be indicative of dynamical interactions in the cluster; however, there is no statistically significant deviation from Gaussianity in the velocity data. We then carried out a Lee-Fitchett 3D substructure test and found that A3888 is bimodal and has two subgroups.  The head-tail galaxy mentioned earlier in one of the clusters was originally thought to be a radio relic candidate. Owing to available broadband polarimetric data and well-separated jets of the head-tail galaxy, we investigated the magnetic field direction of the head-tail galaxy and conclude it is highly likely that a helical magnetic field is present in the jets.  We present the high-resolution images of our 15 clusters and create a catalogue of the detected sources. Finally, we discuss concerns with the current radio halo detections in the literature, and how radio halo surveys could be designed in the future to yield unbiased results.</p>


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 62
Author(s):  
Aritra Basu ◽  
Sharanya Sur

Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving (lf) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different lf is affected due to smoothing by a finite telescope resolution. The mean fractional polarization ⟨p⟩ vary as ⟨p⟩∝lf1/2 with ⟨p⟩>20% for lf≳60 kpc, at frequencies ν>4GHz. Faraday depolarization at ν<3 GHz leads to deviation from this relation, and in combination with beam depolarization, filamentary polarized structures are completely erased, reducing ⟨p⟩ to below 5% level at ν≲1 GHz. Smoothing on scales up to 30 kpc reduces ⟨p⟩ above 4 GHz by at most a factor of 2 compared to that expected at 1 kpc resolution of the simulations, especially for lf≳100 kpc, while at ν<3 GHz, ⟨p⟩ is reduced by a factor of more than 5 for lf≳100 kpc, and by more than 10 for lf≲100 kpc. Our results suggest that observational estimates of, or constrain on, ⟨p⟩ at ν≳4 GHz could be used as an indicator of the turbulent driving scale in the ICM.


Author(s):  
G. Di Gennaro ◽  
R. J. van Weeren ◽  
R. Cassano ◽  
G. Brunetti ◽  
M. Brüggen ◽  
...  

Author(s):  
V. Cuciti ◽  
R. Cassano ◽  
G. Brunetti ◽  
D. Dallacasa ◽  
F. de Gasperin ◽  
...  

Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
A. G. Wilber

Abstract We report on the detection of a giant radio halo in the cluster Abell 3404 as well as confirmation of the radio halo observed in Abell 141 (with linear extents $\sim\!770$ and $\sim\!850$ kpc, respectively). We use the Murchison Widefield Array, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to characterise the emission and intervening radio sources from $\sim100$ to 1 000 MHz; power law models are fit to the spectral energy distributions with spectral indices $\alpha_{88}^{1\,110} = -1.66 \pm 0.07$ and $\alpha_{88}^{943} = -1.06 \pm 0.09$ for the radio halos in Abell 3404 and Abell 141, respectively. We find strong correlation between radio and X-ray surface brightness for Abell 3404 but little correlation for Abell 141. We note that each cluster has an atypical morphology for a radio-halo-hosting cluster, with Abell 141 having been previously reported to be in a pre-merging state, and Abell 3404 is largely relaxed with only minor evidence for a disturbed morphology. We find that the radio halo powers are consistent with the current radio halo sample and $P_\nu$ –M scaling relations, but note that the radio halo in Abell 3404 is an ultra-steep–spectrum radio halo (USSRH) and, as with other USSRHs lies slightly below the best-fit $P_{1.4}$ –M relation. We find that an updated scaling relation is consistent with previous results and shifting the frequency to 150 MHz does not significantly alter the best-fit relations with a sample of 86 radio halos. We suggest that the USSRH halo in Abell 3404 represents the faint class of radio halos that will be found in clusters undergoing weak mergers.


Author(s):  
V. Cuciti ◽  
R. Cassano ◽  
G. Brunetti ◽  
D. Dallacasa ◽  
R. J. van Weeren ◽  
...  

Author(s):  
A Botteon ◽  
R J van Weeren ◽  
G Brunetti ◽  
F de Gasperin ◽  
H T Intema ◽  
...  

Abstract Collisions between galaxy clusters dissipate enormous amounts of energy in the intra-cluster medium (ICM) through turbulence and shocks. In the process, Mpc-scale diffuse synchrotron emission in form of radio halos and relics can form. However, little is known about the very early phase of the collision. We used deep radio observations from 53 MHz to 1.5 GHz to study the pre-merging galaxy clusters A1758N and A1758S that are ∼2 Mpc apart. We confirm the presence of a giant bridge of radio emission connecting the two systems that was reported only tentatively in our earlier work. This is the second large-scale radio bridge observed to date in a cluster pair. The bridge is clearly visible in the LOFAR image at 144 MHz and tentatively detected at 53 MHz. Its mean radio emissivity is more than one order of magnitude lower than that of the radio halos in A1758N and A1758S. Interestingly, the radio and X-ray emissions of the bridge are correlated. Our results indicate that non-thermal phenomena in the ICM can be generated also in the region of compressed gas in-between infalling systems.


Sign in / Sign up

Export Citation Format

Share Document