The one-component plasma liquid: an equation of state for the strongly coupled limit

1984 ◽  
Vol 17 (23) ◽  
pp. 4089-4100 ◽  
Author(s):  
M Giordano ◽  
U de Angelis ◽  
A Forlani
2020 ◽  
Vol 633 ◽  
pp. A149 ◽  
Author(s):  
A. F. Fantina ◽  
S. De Ridder ◽  
N. Chamel ◽  
F. Gulminelli

Context. The interior of a neutron star is usually assumed to be made of cold catalyzed matter. However, the outer layers are unlikely to remain in full thermodynamic equilibrium during the formation of the star and its subsequent cooling, especially after crystallization occurs. Aims. We study the cooling and the equilibrium composition of the outer layers of a non-accreting neutron star down to crystallization. Here the impurity parameter, generally taken as a free parameter in cooling simulations, is calculated self-consistently using a microscopic nuclear model for which a unified equation of state has recently been determined. Methods. We follow the evolution of the nuclear distributions of the multi-component Coulomb liquid plasma fully self-consistently, adapting a general formalism originally developed for the description of supernova cores. We calculate the impurity parameter at the crystallization temperature as determined in the one-component plasma approximation. Results. Our analysis shows that the sharp changes in composition obtained in the one-component plasma approximation are smoothed out when a full nuclear distribution is allowed. The Coulomb coupling parameter at melting is found to be reasonably close to the canonical value of 175, except for specific values of the pressure for which supercooling occurs in the one-component plasma approximation. Our multi-component treatment leads to non-monotonic variations of the impurity parameter with pressure. Its values can change by several orders of magnitude reaching about 50, suggesting that the crust may be composed of an alternation of pure (highly conductive) and impure (highly resistive) layers. The results presented here complement the recent unified equation of state obtained within the same nuclear model. Conclusions. Our self-consistent approach to hot dense multi-component plasma shows that the presence of impurities in the outer crust of a neutron star is non-negligible and may have a sizeable impact on transport properties. In turn, this may have important implications not only for the cooling of neutron stars, but also for their magneto-rotational evolution.


1990 ◽  
Vol 41 (2) ◽  
pp. 1105-1111 ◽  
Author(s):  
Guy S. Stringfellow ◽  
Hugh E. DeWitt ◽  
W. L. Slattery

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 821
Author(s):  
Sergey Khrapak ◽  
Alexey Khrapak

The Prandtl number is evaluated for the three-dimensional hard-sphere and one-component plasma fluids, from the dilute weakly coupled regime up to a dense strongly coupled regime near the fluid-solid phase transition. In both cases, numerical values of order unity are obtained. The Prandtl number increases on approaching the freezing point, where it reaches a quasi-universal value for simple dielectric fluids of about ≃1.7. Relations to two-dimensional fluids are briefly discussed.


2017 ◽  
Vol 57 (6-7) ◽  
pp. 238-251 ◽  
Author(s):  
Scott D. Baalrud ◽  
Jérôme Daligault

1986 ◽  
Vol 93 (2) ◽  
pp. 443-448 ◽  
Author(s):  
R. V. Gopala Rao ◽  
Ratna Das

Sign in / Sign up

Export Citation Format

Share Document