Observation of circularly polarized phonon states in an external magnetic field

1976 ◽  
Vol 9 (11) ◽  
pp. L297-L301 ◽  
Author(s):  
G Schaack
1980 ◽  
Vol 23 (3) ◽  
pp. 483-494 ◽  
Author(s):  
M. Nambu ◽  
S. Bujarbarua ◽  
P. K. Shukla ◽  
K. H. Spatschek

Acceleration of an electron by the electrostatic field of ion wave fluctuations is considered including the external magnetic field. It is found that an accelerated electron can emit unstable electromagnetic waves which propagate along the guide magnetic field. As an example, we discuss the generation of right-handed circularly polarized whistler waves. Application of our result to laboratory and space plasmas is examined.


2014 ◽  
Vol 32 (2) ◽  
pp. 321-330 ◽  
Author(s):  
N. Sepehri Javan ◽  
M. Hosseinpour Azad

AbstractSelf-focusing of an intense circularly-polarized laser beam in a hot electron-positron-ion magneto-plasma is studied. Using a relativistic fluid model, nonlinear equation describing laser-plasma interaction in the quasi-neutral approximation is derived. Expanding nonlinear current density in terms of normalized vector potential and saving only the parabolic terms, we investigated the self-focusing phenomenon for right- and left-hand circularly polarized laser beams. The evolution of laser beam spot size with Gaussian profile is considered. Effects of the external magnetic field, fraction of electron-positron pairs, and also the kind of polarization on the self-focusing property are studied. It is shown that a mixture of electron-positron pairs to the ion-electron plasma modifies the behavior of plasma with respect to the external magnetic field.


2009 ◽  
Vol 75 (5) ◽  
pp. 575-580 ◽  
Author(s):  
P. K. SHUKLA ◽  
R. BINGHAM ◽  
A. D. R. PHELPS ◽  
L. STENFLO

AbstractWe present an investigation of the amplitude modulation of an external magnetic field-aligned right-hand circularly polarized electromagnetic electron-cyclotron (EMEC) wave in a strongly magnetized electron-positron plasma. It is shown that the dynamics of the modulated EMEC wave packet is governed by a cubic nonlinear Schrödinger equation. The latter reveals that a modulated wave packet can propagate in the form of either a dark or a grey envelope soliton. This result could have relevance to the transport of electromagnetic wave energy over long distances via envelope solitons in the magnetospheres of pulsars and magnetars.


Sign in / Sign up

Export Citation Format

Share Document