Microstructure evolution and soft magnetic properties of Fe72 xNbxAl5Ga2P11C6B4(x 0,2) metallic glasses

2002 ◽  
Vol 35 (18) ◽  
pp. 2247-2253 ◽  
Author(s):  
N Mitrovi  ◽  
S Roth ◽  
J Eckert ◽  
C Mickel ◽  
N Mitrovi 
2018 ◽  
Vol 737 ◽  
pp. 815-820 ◽  
Author(s):  
Genlei Zhang ◽  
Qianqian Wang ◽  
Chenchen Yuan ◽  
Weiming Yang ◽  
Jing Zhou ◽  
...  

2008 ◽  
Vol 23 (6) ◽  
pp. 1543-1550 ◽  
Author(s):  
Q. Wang ◽  
C.L. Zhu ◽  
Y.H. Li ◽  
X. Cheng ◽  
W.R. Chen ◽  
...  

Bulk metallic glass (BMG) formations in Co- and Fe-based alloy systems are investigated by using our cluster line approach in combination with minor alloying principle. Basic ternary alloy compositions in Co–B–Si, Fe–B–Y, and Fe–B–Si systems are first determined by cluster lines defined by linking special binary clusters to third elements. Then the basic ternary alloys are further minor alloyed with 3 to 5 at.% Nb to improve glass-forming abilities (GFAs) and ϕ3 mm BMGs are formed in (Co8B3–Si)–Nb and (Fe8B3–Y)–Nb but not in (Fe8B3–Si)–Nb, TM8B3 (TM = Fe, Co) being the most compact binary cluster. The BMGs are expressed approximately with a unified simple composition formula: (TM8B3)1M1, M = (Si, Nb) or (Y, Nb). Finally, mutual Fe and Co substitutions further improve the GFAs as well as the soft magnetic properties, e.g., Is reaching 0.98 T and Hc < 6 A/m for the Co–Fe–B–Si–Nb BMGs. Using the (cluster)1(glue atom)1 model, a new ternary BMG Fe8B3Nb1 is obtained.


2014 ◽  
Vol 50 (4) ◽  
pp. 1-4
Author(s):  
Mariusz Hasiak ◽  
Marcel Miglierini ◽  
Miroslaw Lukiewski ◽  
Jerzy Kaleta

2014 ◽  
Vol 783-786 ◽  
pp. 1895-1900 ◽  
Author(s):  
Teruo Bitoh

The effect of B2O3 fluxing on the glass-forming ability (GFA), the structure and the soft magnetic properties of Fe (-Co)-B-Si-Nb bulk metallic glasses (BMGs) has been investigated. The large Fe-Co-B-Si-Nb BMG specimens with diameters up to 7.7 mm, which is approximately 1.5 times as large as that of the maximum diameter of the copper mold cast one (= 5 mm), were prepared by the fluxing and water quenching. Thus the GFA of the Fe-Co-B-Si-Nb BMG are improved by the fluxing. It was confirmed that the soft magnetic properties of the Fe-Co-B-Si-Nb BMG are also improved by the fluxing. On the other hand, it was found for the Co-free Fe-B-Si-Nb BMG that the B2O3 fluxing promotes the precipitation of the α-Fe (-Si) and Fe2B phases in the central region of the specimens; i.e., the GFA of the Fe-B-Si-Nb BMG is decreased by the fluxing. The Fe-B-Si-Nb BMG specimens show a flat hysteresis loop, indicating a good linear relationship between the magnetic induction and the applied magnetic field. These results of the Fe-B-Si-Nb BMG show that it is possible to develop a new soft magnetic material that exhibits constant permeability, which is necessary for producing inductors and choke coils.


2011 ◽  
Vol 399-401 ◽  
pp. 1012-1015
Author(s):  
Jian Peng Wu ◽  
Shan Dong Li ◽  
Mei Mei Liu ◽  
Xin Le Cai ◽  
Yi Hu ◽  
...  

The effect of C substitution on the glass forming ability (GFA) and soft magnetic properties of Fe-based bulk metallic glasses (BMG) Fe79.4-xCxSi3.5B5.1P8.9Mo3Mn0.1(x = 4.2, 5.2, and 7.0) alloys have been investigated. It is revealed that fully glassy alloy rods with diameters up to 4 mm can be prepared by conventional copper mold casting method even using the low-cost industrial Fe-P master alloy. Properly substituting of Fe by C gives rise to an enhancement of GFA. Moreover, all the samples exhibit good soft magnetic properties with high saturation magnetization up to 1.16 T and low coercivity of 204 A/m.


Sign in / Sign up

Export Citation Format

Share Document