On-line testing device using the compensation method

1989 ◽  
Vol 39 (4) ◽  
pp. 513-515 ◽  
Author(s):  
V Havlíček ◽  
M Mikulec
Author(s):  
Xiong Zhao ◽  
Lianyu Zheng ◽  
Yuehong Zhang

Abstract Mirror error compensation is usually employed to improve the machining precision of thin-walled parts. However, this zero-order method may result in inadequate error compensation, due to the time-varying cutting condition of thin-walled parts. To cope with this problem, an on-line first-order error compensation method is proposed for thin-walled parts. With this context, firstly, the time-varying cutting condition of thin-walled parts is defined with its in-process geometric and physical characteristics. Based on it, a first-order machining error compensation model is constructed. Then, during the process planning, the theory geometric and physical characteristic of thin-walled parts are respectively obtained with CAM software and structure dynamic modification method. After process performing, the real geometric characteristic of thin-walled parts is measured, and it is used to calculate the dimension error of thin-walled parts. Next, the error compensated value is evaluated based on the compensation model, from which, an error compensation plane is constructed to modify the tool center points for next process step. Finally, the machining error is compensated by performing the next process step. A milling test of thin-walled part is employed to verify the proposed method, and the experiment results shown that the proposed method can significantly improve the error compensation effect for low-stiffness structure, and thickness precision of thin-walled parts is improved by 71.4 % compared with the mirror error compensation method after machining.


2013 ◽  
Vol 373-375 ◽  
pp. 856-860
Author(s):  
Xiao Jun Wang ◽  
Yong Jie Zhao ◽  
Jian Xue

An on-line offset current compensation method is proposed to improve ultra-high resistance (UHR) measurement more accurately and reliably. Iterative compensation algorithm is firstly adopted to generate compensation current by adjusting the compensation DAC to decrease the offset current to approximate zero, and then on-line offset current measurement algorithm is employed to ensure the time-varying offset current is always in an appropriate range. This algorithm can maintain a continuous unsaturated measurement process. Experiment results show that the uncertainty (k=2) is 1.4% for 1014Ω and 5.5% for 1015Ω under ±1000V based on the offset current compensation method proposed, which has been successfully implemented in a commercial UHR meter.


2018 ◽  
Vol 39 (2) ◽  
pp. 24-28
Author(s):  
Zhang Baoyi ◽  
Mu Wei ◽  
Wang Hu ◽  
Yao Linhai ◽  
Liu Tong

2015 ◽  
Vol 129 ◽  
pp. 288-297 ◽  
Author(s):  
Seyed Ahmad Mireei ◽  
Morteza Sadeghi ◽  
Alireza Heidari ◽  
Abbas Hemmat

Author(s):  
Yifan Jiang ◽  
Xiang Huang ◽  
Shuanggao Li

Purpose The purpose of this paper is to propose an on-line iterative compensation method combining with a feed-forward compensation method to enhance the assembly accuracy of a metrology-integrated robot system (MIRS). Design/methodology/approach By the integration of a six degrees of freedom (6DoF) measurement system (T-Mac), the robot’ movement can be tracked with real-time measurement. With the on-line measured data, the proposed iterative compensation for absolute positioning and the feed-forward compensation for relative linear motion are integrated into the assembly process to improve the assembly accuracy. Findings It is found that the MIRS exhibits good performance in both accuracy and efficiency with the application of the proposed compensation method. With the proposed assembly process, a component can be automatically aligned to the target in seconds, and the assembly error can be decreased to 0.021 mm for position and 0.008° for orientation on average. Originality/value This paper presents a 6DoF MIRS for high-precision assembly. Based on the system, a novel on-line compensation method is proposed to enhance the assembly accuracy. In this paper, the assembly accuracy and the corresponding distance parameter are given by a series of experiments as reference for assembly applications.


Sign in / Sign up

Export Citation Format

Share Document