Viscous ghost dark energy with a varying gravitational constant

2012 ◽  
Vol 85 (4) ◽  
pp. 045901 ◽  
Author(s):  
A Sheykhi
2014 ◽  
Vol 23 (01) ◽  
pp. 1450002 ◽  
Author(s):  
MOSTAFA SHARIFIAN ◽  
AHMAD SHEYKHI

In this paper, we first study the effects of the varying gravitational constant G as well as the bulk viscosity on the evolution of the Universe field with pressureless dark matter and ghost dark energy (GDE). Then, we establish a correspondence between viscous GDE and scalar field models of dark energy including quintessence, tachyon, K-essence and dilaton energy density in a flat FRW universe. This correspondence allows us to reconstruct the potential and dynamics of the scalar fields according to the evolution of interacting viscous GDE with varying G.


2009 ◽  
Vol 679 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Mubasher Jamil ◽  
Emmanuel N. Saridakis ◽  
M.R. Setare

2020 ◽  
Vol 497 (4) ◽  
pp. 4407-4415
Author(s):  
Ekim Taylan Hanımeli ◽  
Isaac Tutusaus ◽  
Brahim Lamine ◽  
Alain Blanchard

ABSTRACT In this work, we investigate Newtonian cosmologies with a time-varying gravitational constant, G(t). We examine whether such models can reproduce the low-redshift cosmological observations without a cosmological constant, or any other sort of explicit dark energy fluid. Starting with a modified Newton’s second law, where G is taken as a function of time, we derive the first Friedmann–Lemaître equation, where a second parameter, G*, appears as the gravitational constant. This parameter is related to the original G from the second law, which remains in the acceleration equation. We use this approach to reproduce various cosmological scenarios that are studied in the literature, and we test these models with low-redshift probes: type-Ia supernovae (SNIa), baryon acoustic oscillations, and cosmic chronometers, taking also into account a possible change in the supernovae intrinsic luminosity with redshift. As a result, we obtain several models with similar χ2 values as the standard ΛCDM cosmology. When we allow for a redshift-dependence of the SNIa intrinsic luminosity, a model with a G exponentially decreasing to zero while remaining positive (model 4) can explain the observations without acceleration. When we assume no redshift-dependence of SNIa, the observations favour a negative G at large scales, while G* remains positive for most of these models. We conclude that these models offer interesting interpretations to the low-redshift cosmological observations, without needing a dark energy term.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750124 ◽  
Author(s):  
E. Ebrahimi ◽  
H. Golchin ◽  
A. Mehrabi ◽  
S. M. S. Movahed

In this paper, we investigate ghost dark energy model in the presence of nonlinear interaction between dark energy and dark matter. We also extend the analysis to the so-called generalized ghost dark energy (GGDE) which [Formula: see text]. The model contains three free parameters as [Formula: see text] and [Formula: see text] (the coupling coefficient of interactions). We propose three kinds of nonlinear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa from JLA catalog, Hubble parameter, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first nonlinear interaction, the joint analysis indicates that [Formula: see text], [Formula: see text] and [Formula: see text] at 1 optimal variance error. For the second interaction, the best fit values at [Formula: see text] confidence are [Formula: see text], [Formula: see text] and [Formula: see text]. According to combination of all observational data sets considered in this paper, the best fit values for third nonlinearly interacting model are [Formula: see text], [Formula: see text] and [Formula: see text] at [Formula: see text] confidence interval. Finally, we found that the presence of interaction is compatible in mentioned models via current observational datasets.


New Astronomy ◽  
2017 ◽  
Vol 57 ◽  
pp. 70-75 ◽  
Author(s):  
Chandra Rekha Mahanta ◽  
Nitin Sarma

Sign in / Sign up

Export Citation Format

Share Document