Generalized Uncertainty Principle and Thermodynamic Quantities of SAdS 5 Black Hole

2008 ◽  
Vol 50 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Zhang Li-Chun ◽  
Wu Yue-Qin ◽  
Li Huai-Fan ◽  
Zhao Ren
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Yan-Gang Miao ◽  
Ying-Jie Zhao ◽  
Shao-Jun Zhang

As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050010
Author(s):  
Zhong-Wen Feng ◽  
De-Ling Tang ◽  
Dan-Dan Feng ◽  
Shu-Zheng Yang

In this work, we construct a new kind of rainbow functions, which has generalized uncertainty principle parameter. Then, we investigate modified thermodynamic quantities and phase transition of rainbow Schwarzschild black hole by employing this new kind of rainbow functions. Our results demonstrate that the rainbow gravity and generalized uncertainty principle have a great effect on the picture of Hawking radiation. They prevent black holes from total evaporation and cause a remnant. In addition, after analyzing the modified local thermodynamic quantities, we find that the effect of rainbow gravity and the generalized uncertainty principle lead to one first-order phase transition, two second-order phase transitions and two Hawking–Page-type phase transitions in the thermodynamic system of rainbow Schwarzschild black hole.


2021 ◽  
Author(s):  
Zhenxiong Nie ◽  
Yun Liu ◽  
Juhua Chen ◽  
Yongjiu Wang

Abstract In this paper, the thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter is investigated. We calculate the analytical expresses of corresponding thermodynamic variables, e.g. the Hawking temperature, entropy of the black hole. In addition, we derive the heat capacity to analyze the thermal stability of the black hole. We also compute the rate of emission in terms of photons through tunneling. By numerical method, an obvious phase transition behavior is found. Furthermore, according to the general uncertainty principle, we study the quantum corrections to these thermodynamic quantities and obtain the quantum-corrected entropy containing the logarithmic term. At last, we investigate the effects of the magnetic charge g, the dark matter parameter k and the generalized uncertainty principle parameter α on the thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle.


2008 ◽  
Vol 23 (11) ◽  
pp. 839-846 ◽  
Author(s):  
REN ZHAO ◽  
YUE-QIN WU ◽  
LI-CHUN ZHANG

Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein–Hawking entropy of a black hole. In this paper, we calculate the correction value of thermodynamic quantities of the Achucarro–Oritz black hole motivated by utilizing the generalized uncertainty principle. We obtain the Cardy–Verlinde formula after considering the correction.


Sign in / Sign up

Export Citation Format

Share Document