Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap

2014 ◽  
Vol 31 (8) ◽  
pp. 080504 ◽  
Author(s):  
Xing-Li Jing ◽  
Xiang Ling ◽  
Mao-Bin Hu ◽  
Qing Shi
2013 ◽  
Vol 110 (10) ◽  
Author(s):  
Ralph Stoop ◽  
Victor Saase ◽  
Clemens Wagner ◽  
Britta Stoop ◽  
Ruedi Stoop

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260940
Author(s):  
Jiuxia Guo ◽  
Yang Li ◽  
Zongxin Yang ◽  
Xinping Zhu

The resilience and vulnerability of airport networks are significant challenges during the COVID-19 global pandemic. Previous studies considered node failure of networks under natural disasters and extreme weather. Herein, we propose a complex network methodology combined with data-driven to assess the resilience of airport networks toward global-scale disturbance using the Chinese airport network (CAN) and the European airport network (EAN) as a case study. The assessment framework includes vulnerability and resilience analyses from the network- and node-level perspectives. Subsequently, we apply the framework to analyze the airport networks in China and Europe. Specifically, real air traffic data for 232 airports in China and 82 airports in Europe are selected to form the CAN and EAN, respectively. The complex network analysis reveals that the CAN and the EAN are scale-free small-world networks, that are resilient to random attacks. However, the connectivity and vulnerability of the CAN are inferior to those of the EAN. In addition, we select the passenger throughput from the top-50 airports in China and Europe to perform a comparative analysis. By comparing the resilience evaluation of individual airports, we discovered that the factors of resilience assessment of an airport network for global disturbance considers the network metrics and the effect of government policy in actual operations. Additionally, this study also proves that a country’s emergency response-ability towards the COVID-19 has a significantly affectes the recovery of its airport network.


Author(s):  
Megan S. Patterson ◽  
Michael K. Lemke ◽  
Jordan Nelon

This chapter provides an overview of the key foundational concepts and principles of the study of complex systems. First, a definition for system is provided, and the distinctions between complicated and complex systems are demarcated, as are detail, disorganized, organized, and dynamic types of complexity. Common properties across complex systems are defined and described, including stable states and steady states, path dependence, resilience, critical transitions and tipping points, early warning signals, feedback loops, and nonlinearity. This chapter also delves into how complex issues often consist of networks, with random, scale-free, and small world networks defined and network concepts such as degrees, path length, and heterogeneity defined. The concept of emergence is also emphasized, as well as related principles such as adaptation and self-organization. Cardiometabolic disease (and associated comorbidities) is used in this chapter as a thematic population health example.


2015 ◽  
Vol 47 (01) ◽  
pp. 37-56
Author(s):  
Louigi Addario-Berry ◽  
Tao Lei

‘Small worlds’ are large systems in which any given node has only a few connections to other points, but possessing the property that all pairs of points are connected by a short path, typically logarithmic in the number of nodes. The use of random walks for sampling a uniform element from a large state space is by now a classical technique; to prove that such a technique works for a given network, a bound on the mixing time is required. However, little detailed information is known about the behaviour of random walks on small-world networks, though many predictions can be found in the physics literature. The principal contribution of this paper is to show that for a famous small-world random graph model known as the Newman-Watts small-world model, the mixing time is of order log2 n. This confirms a prediction of Richard Durrett [5, page 22], who proved a lower bound of order log2 n and an upper bound of order log3 n.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550052 ◽  
Author(s):  
Lei Wang ◽  
Ping Wang

In this paper, we attempt to understand the propagation and stability feature of large-scale complex software from the perspective of complex networks. Specifically, we introduced the concept of "propagation scope" to investigate the problem of change propagation in complex software. Although many complex software networks exhibit clear "small-world" and "scale-free" features, we found that the propagation scope of complex software networks is much lower than that of small-world networks and scale-free networks. Furthermore, because the design of complex software always obeys the principles of software engineering, we introduced the concept of "edge instability" to quantify the structural difference among complex software networks, small-world networks and scale-free networks. We discovered that the edge instability distribution of complex software networks is different from that of small-world networks and scale-free networks. We also found a typical structure that contributes to the edge instability distribution of complex software networks. Finally, we uncovered the correlation between propagation scope and edge instability in complex networks by eliminating the edges with different instability ranges.


Author(s):  
Graziano Vernizzi ◽  
Henri Orland

This article deals with complex networks, and in particular small world and scale free networks. Various networks exhibit the small world phenomenon, including social networks and gene expression networks. The local ordering property of small world networks is typically associated with regular networks such as a 2D square lattice. The small world phenomenon can be observed in most scale free networks, but few small world networks are scale free. The article first provides a brief background on small world networks and two models of scale free graphs before describing the replica method and how it can be applied to calculate the spectral densities of the adjacency matrix and Laplacian matrix of a scale free network. It then shows how the effective medium approximation can be used to treat networks with finite mean degree and concludes with a discussion of the local properties of random matrices associated with complex networks.


2010 ◽  
Vol 43 (39) ◽  
pp. 395101 ◽  
Author(s):  
Zhongzhi Zhang ◽  
Shuyang Gao ◽  
Lichao Chen ◽  
Shuigeng Zhou ◽  
Hongjuan Zhang ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Shouwei Li ◽  
Jianmin He

This paper first constructs a tiered network model of the interbank market. Then, from the perspective of contagion risk, it studies numerically the resilience of four types of interbank market network models to shocks, namely, tiered networks, random networks, small-world networks, and scale-free networks. This paper studies the interbank market with homogeneous and heterogeneous banks and analyzes random shocks and selective shocks. The study reveals that tiered interbank market networks and random interbank market networks are basically more vulnerable against selective shocks, while small-world interbank market networks and scale-free interbank market networks are generally more vulnerable against random shocks. Besides, the results indicate that, in the four types of interbank market networks, scale-free networks have the highest stability against shocks, while small-world networks are the most vulnerable. When banks are homogeneous, faced with selective shocks, the stability of the tiered interbank market networks is slightly lower than that of random interbank market networks, whereas, in other cases, the stability of the tiered interbank market networks is basically between that of random interbank market networks and that of scale-free interbank market networks.


Sign in / Sign up

Export Citation Format

Share Document