General relativistic electromagnetic effects in transmission-line gyroscopes

1986 ◽  
Vol 3 (6) ◽  
pp. 1125-1131 ◽  
Author(s):  
P W Forder
2021 ◽  
Vol 11 (18) ◽  
pp. 8723
Author(s):  
Nikolay Lysov ◽  
Alexander Temnikov ◽  
Leonid Chernensky ◽  
Alexander Orlov ◽  
Olga Belova ◽  
...  

The results of a physical simulation using negatively charged artificial thunderstorm cells to test the spectrum of possible electromagnetic effects of upward streamer discharges on the model elements of transmission line monitoring systems (sensor or antennas) are presented. Rod and elongated model elements with different electric field amplification coefficients are investigated. A generalization is made about the parameters of upward streamer current impulse and its electromagnetic effect on both kinds of model elements. A wavelet analysis of the upward streamer corona current impulse and of the signal simultaneously induced in the neighboring model element is conducted. A generalization of the spectral characteristics of the upward streamer current and of the signals induced by the electromagnetic radiation of the nearby impulse streamer corona on model elements is made. The reasons for super-high and ultra-high frequency ranges in the wavelet spectrum of the induced electromagnetic effect are discussed. The characteristic spectral ranges of the possible electromagnetic effect of upward streamer flash on the elements of transmission line monitoring systems are considered.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


1983 ◽  
Vol 44 (C10) ◽  
pp. C10-305-C10-314
Author(s):  
S. Lundqvist ◽  
P. Apell

2013 ◽  
Vol 133 (5) ◽  
pp. 957-961
Author(s):  
Yasuyoshi Okita ◽  
Futoshi Kuroki ◽  
Yuki Kawahara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document