scholarly journals The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval

2010 ◽  
Vol 26 (5) ◽  
pp. 055010 ◽  
Author(s):  
Masaru Ikehata
2019 ◽  
Vol 27 (1) ◽  
pp. 133-149 ◽  
Author(s):  
Masaru Ikehata

Abstract The wave equation is time-reversal invariant. The enclosure method, using a Neumann data generated by this invariance, is introduced. The method yields the minimum ball that is centered at a given arbitrary point and encloses an unknown obstacle embedded in a known bounded domain from a single point on the graph of the so-called response operator on the boundary of the domain over a finite time interval. The occurrence of the lacuna in the solution of the free space wave equation is positively used.


Author(s):  
Masaru Ikehata

AbstractA final and maybe the simplest formulation of the enclosure method applied to inverse obstacle problems governed by partial differential equations in a


2004 ◽  
Vol 41 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Zvetan G. Ignatov ◽  
Vladimir K. Kaishev

An explicit formula for the probability of nonruin of an insurance company in a finite time interval is derived, assuming Poisson claim arrivals, any continuous joint distribution of the claim amounts and any nonnegative, increasing real function representing its premium income. The formula is compact and expresses the nonruin probability in terms of Appell polynomials. An example, illustrating its numerical convenience, is also given in the case of inverted Dirichlet-distributed claims and a linearly increasing premium-income function.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document