Long-time versus short-time behaviour of a system of interacting Brownian particles

1980 ◽  
Vol 13 (1) ◽  
pp. L5-L10 ◽  
Author(s):  
W Hess ◽  
R Klein
Author(s):  
Mahesh Mynam ◽  
P. Sunthar ◽  
Santosh Ansumali

A lattice Boltzmann (LB)-based hybrid method is developed to simulate suspensions of Brownian particles. The method uses conventional LB discretization (without fluid- level fluctuations) for suspending fluid, and treats Brownian particles as point masses with a stochastic thermal noise. LB equations are used to compute the velocity perturbations induced by the particle motion. It is shown that this method correctly reproduces the short-time and long-time diffusive behaviour of a Brownian particle. Unlike the earlier hybrid methods that use thermal fluctuations in the fluid, this method correctly reproduces the temperature of the particle and does not require an empirical rescaling of the bare friction coefficient to obtain the correct diffusive behaviour. It is observed that the present method is at least twice as fast as the earlier method. This method is best suited for flows of polymers and Brownian suspensions in microfluidic devices.


2012 ◽  
Vol 697 ◽  
pp. 60-91 ◽  
Author(s):  
N. Sugimoto ◽  
H. Hyodo

AbstractThis paper examines the effects of heat conduction in a wall on thermoacoustic-wave propagation in a gas, as a continuation of the previous paper (Sugimoto, J. Fluid Mech., 2010, vol. 658, pp. 89–116), enclosed in two-dimensional channels by a stack of plates or in a periodic array of circular tubes, both being subject to a temperature gradient axially and extending infinitely. Within the narrow-tube approximation employed previously, the linearized system of fluid-dynamical equations for the ideal gas coupled with the equation for heat conduction in the solid wall are reduced to single thermoacoustic-wave equations in the respective cases. In this process, temperatures of the gas and the solid wall are sought to the first order of asymptotic expansions in a small parameter determined by the square root of the product of the ratio of heat capacity of gas per volume to that of the solid, and the ratio of thermal conductivity of the gas to that of the solid. The effects of heat conduction introduce into the equation two hereditary terms due to triple coupling among viscous diffusion, thermal diffusion of the gas and that of the solid, and due to double coupling between thermal diffusions of the gas and solid. While the thermoacoutic-wave equations are valid always for any form of disturbances generally, approximate equations are derived from them for a short-time behaviour and a long-time behaviour. For the short-time behaviour, the effects of heat conduction are negligible, while for the long-time behaviour, they will affect the propagation as a wall becomes thinner. It is unveiled that when the geometry of the channels or the tubes, and the combination of the gas and the solid satisfy special conditions, the asymptotic expansions exhibit non-uniformity, i.e. a resonance occurs, and then the thermoacoustic-wave equations break down. Discussion is given on modifications in the resonant case by taking full account of the effects of heat conduction, and also on the effects on the acoustic fields.


2010 ◽  
Vol 658 ◽  
pp. 89-116 ◽  
Author(s):  
N. SUGIMOTO

This paper develops a general theory for linear propagation of acoustic waves in a gas enclosed in a two-dimensional channel and in a circular tube subject to temperature gradient axially and extending infinitely. A ‘narrow-tube approximation’ is employed by assuming that a typical axial length is much longer than a span length, but no restriction on a thickness of thermoviscous diffusion layer is made. For each case, basic equations in this approximation are reduced to a spatially one-dimensional equation in terms of an excess pressure by making use of a method of Fourier transform. This equation, called a thermoacoustic-wave equation, is given in the form of an integro-differential equation due to memory by thermoviscous effects. Approximations of the equations for a short-time and a long-time behaviour from an initial state are discussed based on the Deborah number and the Reynolds number. It is shown that the short-time behaviour is well approximated by the equation derived previously by the boundary-layer theory, while the long-time behaviour is described by new diffusion equations. It is revealed that if the diffusion layer is thicker than the span length, the thermoviscous effects give rise to not only diffusion but also wave propagation by combined action with temperature gradient, and that negative diffusion may occur if the gradient is steep.


2017 ◽  
Vol 836 ◽  
pp. 873-909 ◽  
Author(s):  
Aashay Tinaikar ◽  
S. Advaith ◽  
S. Basu

The evolution of vortex rings in isodensity and isoviscosity fluid has been studied analytically using a novel mathematical model. The model predicts the spatiotemporal variation in peak vorticity, circulation, vortex size and spacing based on instantaneous vortex parameters. This proposed model is quantitatively verified using experimental measurements. Experiments are conducted using high-speed particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques. Non-buoyant vortex rings are generated from a nozzle using a constant hydrostatic pressure tank. The vortex Reynolds number based on circulation $(\unicode[STIX]{x1D6E4}/\unicode[STIX]{x1D708})$ is varied in the range 100–1500 to account for a large range of operating conditions. Experimental results show good agreement with theoretical predictions. However, it is observed that neither Saffman’s thin-core model nor the thick-core equations could correctly explain vortex evolution for all initial conditions. Therefore, a transitional theory is framed using force balance equations which seamlessly integrate short- and long-time asymptotic theories. It is found that the parameter $A=(a/\unicode[STIX]{x1D70E})^{2}$, where $a$ is the vortex half-spacing and $\unicode[STIX]{x1D70E}$ denotes the standard deviation of the Gaussian vorticity profile, governs the regime of vortex evolution. For higher values of $A$, evolution follows short-time behaviour, while for $A=O(1)$, long-time behaviour is prominent. Using this theory, many reported anomalous observations have been explained.


1923 ◽  
Vol 128 (4) ◽  
pp. 264-264
Author(s):  
J. W. Harsch
Keyword(s):  

Author(s):  
Kenji Ikeda ◽  
Yusuke Kawamura ◽  
Masahiro Kobayashi ◽  
Taito Fukushima ◽  
Yushi Sorin ◽  
...  

Background: Although DC Bead has been useful in treatment of multiple and large hepatocellular carcinoma, loading time of doxorubicin into the DC Bead takes a long time of 30-120 minutes. Epirubicin is also used as an antitumor agent together with DC Bead, but its loading efficiency was not sufficiently elucidated. Methods: To shorten loading time of epirubicin into DC Bead (100-300µm, 300-500µm, 500-700µm), we examined the following three methods after mixing the drug: (a) let stand in room temperature, (b) agitated for 30 seconds with Vortex mixer, and (c) sonicated for 30 seconds with ultrasonic cleaner. After loading of epirubicin by each method, supernatant concentration for epirubicin was assayed at 5, 10, 30, 60, and 120 minutes. Results: Epirubicin loading rates for small bead (100-300µm) at 5 minutes were 82.9 % in group a, 93.8% in group b, and 79.9 % in group c. Similarly, medium bead (300-500µm), 40.1% in group a, 65.7% in group b and 45.5% in group c, respectively. In large-sized bead (500-700µm), loaded rates of epirubicin were 38.8% in group a, 59.0% in group b and 48.0% in group c. Agitation of mixture of epirubicin and DC Bead with Vortex mixer significantly shortened the loading time, but sonication did not affect the time required. Microscopic examination did not lead to any morphological change of microspheres in all the methods. Conclusions: Short time of agitation with Vortex mixer reduced the necessary time for loading of epirubicin in every standard of DC Bead.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


Sign in / Sign up

Export Citation Format

Share Document