scholarly journals Generating function associated with the rational solutions of the Painlevé II equation

2002 ◽  
Vol 35 (16) ◽  
pp. L207-L211 ◽  
Author(s):  
Katsunori Iwasaki ◽  
Kenji Kajiwara ◽  
Toshiya Nakamura
2016 ◽  
Vol 71 (6) ◽  
pp. 557-564 ◽  
Author(s):  
Bo Ren ◽  
Ji Lin

AbstractBased on the modified direct method, the variable-coefficient perturbed mKdV equation is changed to the constant-coefficient perturbed mKdV equation. The truncated Painlevé method is applied to obtain the nonlocal symmetry of the constant-coefficient perturbed mKdV equation. By introducing one new dependent variable, the nonlocal symmetry can be localized to the Lie point symmetry. Thanks to the localization procedure, the finite symmetry transformation is presented by solving the initial value problem of the prolonged systems. Furthermore, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, and Painlevé II solutions are obtained using the symmetry reduction method to the enlarged systems. Two special concrete soliton-cnoidal interaction solutions are studied in both analytical and graphical ways.


1997 ◽  
Vol 232 (3-4) ◽  
pp. 189-199 ◽  
Author(s):  
Kenji Kajiwara ◽  
Kazushi Yamamoto ◽  
Yasuhiro Ohta

1985 ◽  
Vol 50 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Vilém Kodýtek

The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a generating function of the MM system of thermodynamic quantities for solutions in the state of osmotic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, and m in the definition of the Lewis-Randall (LR) system by AMM, T, P0, and c (P0 being the pure solvent pressure). Following this way the LR to MM conversion relations for the first derivatives of the free energy are obtained in a simple form. New relations are derived for its second derivatives.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


Sign in / Sign up

Export Citation Format

Share Document