symmetry transformation
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 4)

Author(s):  
Hengchun Hu ◽  
Xiaodan Li

The nonlocal symmetry of the new (3+1)-dimensional Boussinesq equation is obtained with the truncated Painlev\'{e} method. The nonlocal symmetry can be localized to the Lie point symmetry for the prolonged system by introducing auxiliary dependent variables. The finite symmetry transformation related to the nonlocal symmetry of the integrable (3+1)-dimensional Boussinesq equation is studied. Meanwhile, the new (3+1)-dimensional Boussinesq equation is proved by the consistent tanh expansion method and many interaction solutions among solitons and other types of nonlinear excitations such as cnoidal periodic waves and resonant soliton solution are given.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2443
Author(s):  
Ashraf Ahmad ◽  
Yousef AbuHour ◽  
Firas Alghanim

A Distributed Denial of Service (DDoS) attack is a type of cybercrime that renders a target service unavailable by overwhelming it with traffic from several sources (attack nodes). In this paper, we focus on DDoS attacks on a computer network by spreading bots throughout the network. A mathematical differential equation model is proposed to represent the dynamism of nodes at different compartments of the model. The model considers two levels of security, with the assumption that the recovered nodes do not return to the same security level. In previous models, the recovered nodes are returned to be suspect on the same security level, which is an unrealistic assumption. Moreover, it is assumed that the attacker can use the infected target nodes to attack again. With such epidemic-like assumptions of infection, different cases are presented and discussed, and the stability of the model is analyzed as well; reversing the symmetry transformation of attacking nodes population is also proven. The proposed model has many parameters in order to precisely describe the infection movement and propagation. Numerical simulation methods are used to solve the developed system of equations using MATLAB, with the intention of finding the best counteraction to control DDoS spread throughout a network.


Author(s):  
Hengchun Hu ◽  
Xiaodan Li

The nonlocal symmetry of the new integrable [Formula: see text]-dimensional Boussinesq equation is studied by the standard truncated Painlevé expansion. This nonlocal symmetry can be localized to the Lie point symmetry of the prolonged system by introducing two auxiliary dependent variables. The corresponding finite symmetry transformation and similarity reduction related to the nonlocal symmetry of the new integrable [Formula: see text]-dimensional Boussinesq equation are studied. The rational solution, the triangle solution, two solitoff-interaction solution and the soliton–cnoidal interaction solutions for the new [Formula: see text]-dimensional Boussinesq equation are presented analytically and graphically by selecting the proper arbitrary constants.


Author(s):  
Zheng Mingliang ◽  

An design method of electromagnetic metamaterial based on Lie symmetry of Maxwell's equation is proposed, which is applied to the modulation of electromagnetic wave / light. Firstly, the electromagnetic control model based on metamaterials is introduced, then according to the theory of Transformation Optics (TO), Lie symmetry analysis is applied to the coordinate transformation of material physical space, and the key core is the determining equations of Lie symmetry is derived. Secondly, the analytical forms of constitutive parameters (permittivity and permeability) of metamaterials are introduced, which can be used to design all kinds of electromagnetic metamaterials. Finally, the Lie symmetry method is applied to the control of electromagnetic beam width. The results show that the metamaterial based on Lie symmetry of Maxwell's equation have good field distribution, and it overcomes the single subjectivity of traditional coordinate transformation in optical transformation. The wave simulation by COMSOL Multiphysics software verify the correctness of Lie symmetry method.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 521
Author(s):  
Sisi Zhou ◽  
Zi-Wen Liu ◽  
Liang Jiang

Covariant codes are quantum codes such that a symmetry transformation on the logical system could be realized by a symmetry transformation on the physical system, usually with limited capability of performing quantum error correction (an important case being the Eastin–Knill theorem). The need for understanding the limits of covariant quantum error correction arises in various realms of physics including fault-tolerant quantum computation, condensed matter physics and quantum gravity. Here, we explore covariant quantum error correction with respect to continuous symmetries from the perspectives of quantum metrology and quantum resource theory, establishing solid connections between these formerly disparate fields. We prove new and powerful lower bounds on the infidelity of covariant quantum error correction, which not only extend the scope of previous no-go results but also provide a substantial improvement over existing bounds. Explicit lower bounds are derived for both erasure and depolarizing noises. We also present a type of covariant codes which nearly saturates these lower bounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
A. K. Rao ◽  
A. Tripathi ◽  
R. P. Malik

We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space x and time t variables are a function of an evolution parameter τ . The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter τ . We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by τ ) is generalized onto a 1 , 2 -dimensional supermanifold which is characterized by the superspace coordinates Z M = τ , θ , θ ¯ where a pair of the Grassmannian variables satisfy the fermionic relationships: θ 2 = θ ¯ 2 = 0 , θ   θ ¯ + θ ¯   θ = 0 , and τ is the bosonic evolution parameter. In the context of ACSA, we take into account only the 1 , 1 -dimensional (anti)chiral super submanifolds of the general 1 , 2 -dimensional supermanifold. The derivation of the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar) relativistic particles. This is a novel observation, too.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1268
Author(s):  
Yarong Xia ◽  
Ruoxia Yao ◽  
Xiangpeng Xin ◽  
Yan Li

In this paper, we provide a method to construct nonlocal symmetry of nonlinear partial differential equation (PDE), and apply it to the CKdV (CKdV) equations. In order to localize the nonlocal symmetry of the CKdV equations, we introduce two suitable auxiliary dependent variables. Then the nonlocal symmetries are localized to Lie point symmetries and the CKdV equations are extended to a closed enlarged system with auxiliary dependent variables. Via solving initial-value problems, a finite symmetry transformation for the closed system is derived. Furthermore, by applying similarity reduction method to the enlarged system, the Painlevé integral property of the CKdV equations are proved by the Painlevé analysis of the reduced ODE (Ordinary differential equation), and the new interaction solutions between kink, bright soliton and cnoidal waves are given. The corresponding dynamical evolution graphs are depicted to present the property of interaction solutions. Moreover, With the help of Maple, we obtain the numerical analysis of the CKdV equations. combining with the two and three-dimensional graphs, we further analyze the shapes and properties of solutions u and v.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Sudhaker Upadhyay ◽  
Bhabani Prasad Mandal

AbstractWe provide a BRST formalism for the soft-collinear effective theory describing interactions of soft and collinear degrees of freedom in the presence of a hard interaction. In particular, we develop a BRST symmetry transformation for SCET theory. We further generalize the BRST formulation by making the transformation parameter field dependent. This establishes a mapping between several SCET actions consistently when defined in different gauge conditions. In fact, a definite structure of gauge-fixed actions corresponding to any particular gauge condition can be generated for SCET theory using our formulation.


Sign in / Sign up

Export Citation Format

Share Document