scholarly journals Non-Hermitian quantum mechanics: the case of bound state scattering theory

2006 ◽  
Vol 39 (34) ◽  
pp. 10859-10870 ◽  
Author(s):  
A Matzkin
Author(s):  
Enayatolah Yazdankish

The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.


2003 ◽  
Vol 18 (02n06) ◽  
pp. 124-127 ◽  
Author(s):  
H. KAMADA ◽  
W. GLÖCKLE ◽  
J. GOLAK ◽  
CH. ELSTER

In the context of equal time relativistic quantum mechanics we introduce a Lorentz boosted potential. The dynamical input are nonrelativistic realistic nucleon-nucleon (NN) potentials, which by a suitable momentum change are analytically transformed into NN potentials fulfilling the relativistic two-nucleon Schrödinger equation in the c.m. system. The binding energy of the three nucleon (3N) bound state is calculated and we find that the boost effects for the two-body subsystems are repulsive and lower the binding energy. In addition we compare to a recently proposed approximate scheme.


1988 ◽  
Vol 03 (05) ◽  
pp. 1235-1261 ◽  
Author(s):  
H. SAZDJIAN

We develop, in the framework of two-particle relativistic quantum mechanics, the formalism needed to describe massless bound state systems and their internal dynamics. It turns out that the dynamics here is two-dimensional, besides the contribution of the spin degrees of freedom, provided by the two space-like transverse components of the relative coordinate four-vector, decomposed in an appropriate light cone basis. This is in contrast with the massive bound state case, where the dynamics is three-dimensional. We also construct the scalar product of the theory. We apply this formalism to several types of composite systems, involving spin-0 bosons and/or spin-1/2 fermions, which produce massless bound states.


Sign in / Sign up

Export Citation Format

Share Document