scholarly journals Distributed coherent manipulation of qutrits by virtual excitation processes

2010 ◽  
Vol 43 (8) ◽  
pp. 085506 ◽  
Author(s):  
Zhen-Biao Yang ◽  
Sai-Yun Ye ◽  
Alessio Serafini ◽  
Shi-Biao Zheng
Author(s):  
J. Liu ◽  
J. M. Cowley

The low energy loss region of a EELS spectrum carries information about the valence electron excitation processes (e.g., collective excitations for free electron like materials and interband transitions for insulators). The relative intensities and the positions of the interband transition energy loss peaks observed in EELS spectra are determined by the joint density of states (DOS) of the initial and final states of the excitation processes. Thus it is expected that EELS in reflection mode could yield information about the perturbation of the DOS of the conduction and valence bands of the bulk crystals caused by the termination of the three dimensional periodicity at the crystal surfaces. The experiments were performed in a Philipps 400T transmission electron microscope operated at 120 kV. The reflection EELS spectra were obtained by a Gatan 607 EELS spectrometer together with a Tracor data acquisition system and the resolution of the spectrometer was about 0.8 eV. All the reflection spectra are obtained from the specular reflection spots satisfying surface resonance conditions.


2019 ◽  
Vol 85 (2) ◽  
pp. 17-22
Author(s):  
M. I. Khamdeev ◽  
E. A. Erin

Physical parameters of electric arc plasma as well as their time dependences are calculated when analyzing phosphate precipitates of the fission products of irradiated nuclear fuel. Phosphate concentrates of the fission products are known for their complex chemical composition and high thermal and chemical stability. Hence, direct atomic emission spectral analysis of phosphate powders without transferring them into solutions is advisable. Different conditions of sample preparation and synthesis of the reference materials determine the different chemical forms of the elements to be determined. This, in turn, affects the kinetics of their evaporation in the electrode crate and excitation processes in the plasma. The known mechanisms of those processes cannot always be transferred to specific conditions of the given method of analysis thus entailing the necessity of studying the effect of the samples chemical composition on the results of determination, proper choice of spectroscopic carriers, detailed study of spectra excitation processes in spectral analysis, and analysis of the physical parameters of the electric arc plasma. We used the lines Zn I 307.206 nm and Zn I 307.589 nm to measure the effective temperature of the central hot sections of the arc in a range of4500 - 6500 K. NaCl, BaCl2 and NaCl + T1C1 were studied to reduce the effect of the sample elemental composition on excitation conditions of the spectra and their stabilization as a spectroscopic carrier. In control experiments we used carrier-free samples. The coincidence of the values of the plasma physical parameters within the measurement error not exceeding 20%, as well as the identity of the nature of the kinetic curves for samples of phosphate precipitates and synthetic reference materials prove their correctness. The result of the study substantiate correctness of the direct atomic-emission spectral procedure in analysis of phosphate concentrates of fission when using synthetic reference materials.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye-Xin Wang ◽  
Zheng Liu ◽  
Yu-Hui Fang ◽  
Shen Zhou ◽  
Shang-Da Jiang ◽  
...  

AbstractHigh-spin magnetic molecules are promising candidates for quantum information processing because their intrinsic multiplicity facilitates information storage and computational operations. However, due to the absence of suitable sublevel splittings, their susceptibility to environmental disturbances and limitation from the selection rule, the arbitrary control of the quantum state of a molecular electron multiplet has not been realized. Here, we exploit the photoexcited triplet of C70 as a molecular electron spin qutrit with pulsed electron paramagnetic resonance. We prepared the system into 3-level superposition states characteristic of a qutrit and validated them by the tomography of their density matrices. To further elucidate the coherence of the operation and the nature of the system as a qutrit, we demonstrated the quantum phase interference in the superposition. The interference pattern is further interpreted as a map of possible evolution paths in the space of phase factors, representing the quantum nature of the 3-level system.


2006 ◽  
Vol 121 (2) ◽  
pp. 222-225 ◽  
Author(s):  
A.A. Prokofiev ◽  
A.S. Moskalenko ◽  
I.N. Yassievich

Sign in / Sign up

Export Citation Format

Share Document