scholarly journals High-order Dy multipole motifs observed in DyB2C2with resonant soft x-ray Bragg diffraction

2006 ◽  
Vol 18 (49) ◽  
pp. 11195-11202 ◽  
Author(s):  
A M Mulders ◽  
U Staub ◽  
V Scagnoli ◽  
S W Lovesey ◽  
E Balcar ◽  
...  
Keyword(s):  
2012 ◽  
Vol 112 (11) ◽  
pp. 114904 ◽  
Author(s):  
Stefan P. Hau-Riege ◽  
Tommaso Pardini

2015 ◽  
Vol 71 (8) ◽  
pp. 1657-1667 ◽  
Author(s):  
Andrew H. Van Benschoten ◽  
Pavel V. Afonine ◽  
Thomas C. Terwilliger ◽  
Michael E. Wall ◽  
Colin J. Jackson ◽  
...  

Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool,phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case,phenix.diffuseis applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures,phenix.tls_as_xyzbuilds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.


Author(s):  
Hiroki Mashiko ◽  
Akira Suda ◽  
Katsumi Midorikawa
Keyword(s):  

Author(s):  
V. B. Molodkin ◽  
S. I. Olikhovskii ◽  
S. V. Dmitriev ◽  
V. V. Lizunov

The analytical expressions for coherent and diffuse components of the integrated reflection coefficient are considered in the case of Bragg diffraction geometry for single crystals containing randomly distributed microdefects. These expressions are analyzed numerically for the cases when the instrumental integration of the diffracted X-ray intensity is performed on one, two or three dimensions in the reciprocal-lattice space. The influence of dynamical effects, i.e. primary extinction and anomalously weak and strong absorption, on the integrated intensities of X-ray scattering is investigated in relation to the crystal structure imperfections.


2021 ◽  
Vol 54 (5) ◽  
pp. 1530-1534
Author(s):  
Sergey Stepanov

X-ray Server (https://x-server.gmca.aps.anl.gov) is a collection of programs for online modelling of X-ray diffraction and scattering. The dynamical diffraction program is the second most popular Server program, contributing 34% of total Server usage. It models dynamical X-ray diffraction from strained crystals and multilayers for any Bragg-case geometry including grazing incidence and exit. This paper reports on a revision of equations used by the program, which yields ten times faster calculations in most use cases, on implementing calculations of X-ray standing waves and on adding new options for modelling diffraction from monolayers.


Sign in / Sign up

Export Citation Format

Share Document