Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

2009 ◽  
Vol 21 (46) ◽  
pp. 464119 ◽  
Author(s):  
Tiezheng Qian ◽  
Congmin Wu ◽  
Siu Long Lei ◽  
Xiao-Ping Wang ◽  
Ping Sheng
2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


2020 ◽  
Vol 229 (10) ◽  
pp. 1849-1865 ◽  
Author(s):  
Mathis Fricke ◽  
Dieter Bothe

Abstract The moving contact line paradox discussed in the famous paper by Huh and Scriven has lead to an extensive scientific discussion about singularities in continuum mechanical models of dynamic wetting in the framework of the two-phase Navier–Stokes equations. Since the no-slip condition introduces a non-integrable and therefore unphysical singularity into the model, various models to relax the singularity have been proposed. Many of the relaxation mechanisms still retain a weak (integrable) singularity, while other approaches look for completely regular solutions with finite curvature and pressure at the moving contact line. In particular, the model introduced recently in [A.V. Lukyanov, T. Pryer, Langmuir 33, 8582 (2017)] aims for regular solutions through modified boundary conditions. The present work applies the mathematical tool of compatibility analysis to continuum models of dynamic wetting. The basic idea is that the boundary conditions have to be compatible at the contact line in order to allow for regular solutions. Remarkably, the method allows to compute explicit expressions for the pressure and the curvature locally at the moving contact line for regular solutions to the model of Lukyanov and Pryer. It is found that solutions may still be singular for the latter model.


2012 ◽  
Vol 11 (3) ◽  
pp. 831-862 ◽  
Author(s):  
Sihong Shao ◽  
Tiezheng Qian

AbstractWe develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the On-sager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity ofmoving contact line and the Smoluchowski slip in the electric double layer are both investigated.


2007 ◽  
Vol 21 (23n24) ◽  
pp. 4131-4143 ◽  
Author(s):  
PING SHENG ◽  
TIEZHENG QIAN ◽  
XIAOPING WANG

While the no-slip boundary condition (no relative motion at the fluid-solid interface) has been universally accepted as a cornerstone of hydrodynamics, it was known for some time that it is incompatible with the moving contact line, defined as the motion of the line of intersection of the immiscible (two phase) fluid-fluid interface with the solid wall. By employing Onsager's principle of minimum energy dissipation, we show in this work that a continuum hydrodynamics, comprising the equations of motion as well as the relevant boundary conditions, can be obtained which resolves the moving contact line problem. Our derivation reveals that just as other dissipative system dynamics, the fluid-solid interfacial boundary condition should be consistent with the framework of linear response theory. Implications of our results are discussed.


2001 ◽  
Vol 11 (PR6) ◽  
pp. Pr6-199-Pr6-212 ◽  
Author(s):  
Y. Pomeau

Sign in / Sign up

Export Citation Format

Share Document