Persistent activity and the single-cell frequency–current curve in a cortical network model

2000 ◽  
Vol 11 (4) ◽  
pp. 261-280 ◽  
Author(s):  
Nicolas Brunel
2011 ◽  
Vol 105 (2) ◽  
pp. 757-778 ◽  
Author(s):  
Malte J. Rasch ◽  
Klaus Schuch ◽  
Nikos K. Logothetis ◽  
Wolfgang Maass

A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N -methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models.


NeuroImage ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 956-972 ◽  
Author(s):  
Alberto Mazzoni ◽  
Kevin Whittingstall ◽  
Nicolas Brunel ◽  
Nikos K Logothetis ◽  
Stefano Panzeri

2014 ◽  
Vol 5 ◽  
Author(s):  
Frédéric Lavigne ◽  
Francis Avnaïm ◽  
Laurent Dumercy

1995 ◽  
Vol 18 (4) ◽  
pp. 626-627 ◽  
Author(s):  
Ehud Ahissar

AbstractPersistent activity can be the product of mechanisms other than attractor reverberations. The single-unit data presented by Amit cannot discriminate between the different mechanisms. In fact, single-unit data do not appear to be adequate for testing neural network models.


2018 ◽  
Author(s):  
Tyler J. Burns ◽  
Garry P. Nolan ◽  
Nikolay Samusik

In high-dimensional single cell data, comparing changes in functional markers between conditions is typically done across manual or algorithm-derived partitions based on population-defining markers. Visualizations of these partitions is commonly done on low-dimensional embeddings (eg. t-SNE), colored by per-partition changes. Here, we provide an analysis and visualization tool that performs these comparisons across overlapping k-nearest neighbor (KNN) groupings. This allows one to color low-dimensional embeddings by marker changes without hard boundaries imposed by partitioning. We devised an objective optimization of k based on minimizing functional marker KNN imputation error. Proof-of-concept work visualized the exact location of an IL-7 responsive subset in a B cell developmental trajectory on a t-SNE map independent of clustering. Per-condition cell frequency analysis revealed that KNN is sensitive to detecting artifacts due to marker shift, and therefore can also be valuable in a quality control pipeline. Overall, we found that KNN groupings lead to useful multiple condition visualizations and efficiently extract a large amount of information from mass cytometry data. Our software is publicly available through the Bioconductor package Sconify.


2019 ◽  
Author(s):  
Soeren Lukassen ◽  
Foo Wei Ten ◽  
Roland Eils ◽  
Christian Conrad

AbstractRecent advances in single-cell RNA sequencing (scRNA-Seq) have driven the simultaneous measurement of the expression of 1,000s of genes in 1,000s of single cells. These growing data sets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogenous cell populations. Here, we propose an unsupervised deep neural network model that is a hybrid of matrix factorization and conditional variational autoencoders (CVA), which utilizes weights as matrix factorizations to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental batch effect correction, and static gene identification, which we conceptually prove here for three single-cell RNA-Seq datasets and suggest for future single-cell-gene analytics.


2008 ◽  
Vol 74 (22) ◽  
pp. 7098-7099 ◽  
Author(s):  
P. K. Malakar ◽  
G. C. Barker

ABSTRACT Network models offer computationally efficient tools for estimating the variability of single-cell lag phases. Currently, optical methods for estimating the variability of single-cell lag phases use single-cell inocula and are technically challenging. A Bayesian network model incorporating small uncertain inocula addresses these limitations.


Sign in / Sign up

Export Citation Format

Share Document