Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms

2011 ◽  
Vol 21 (2) ◽  
pp. 027004 ◽  
Author(s):  
Roland Probst ◽  
Benjamin Shapiro
Author(s):  
Kiyoshi Takagi ◽  
Hidekazu Nishimura

Abstract This paper deals with modeling and control of a crane mounted on a tower-like flexible structure. A fast transfer of the load causes the sway of the load rope and the vibration of the flexible structure. Our object is to control both the sway and the vibration by the inherent capability of the tower crane. This paper makes its three-dimensional models for simulation and reduced-order-model in order to design the decentralized control system. Then, we design the decentralized H∞ compensator and verify the efficiency by simulations and experiments.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Micael S. Couceiro ◽  
N. M. Fonseca Ferreira ◽  
J. A. Tenreiro Machado

Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, the dynamics of a dragonfly-inspired robot is studied. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movements, the dynamics, and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.


Author(s):  
Jason D. Geder ◽  
Ravi Ramamurti ◽  
John Palmisano ◽  
Marius Pruessner ◽  
Banahalli Ratna ◽  
...  

This paper describes the modeling and control development of a bio-inspired unmanned underwater vehicle (UUV) propelled by four pectoral fins. Based on both computational fluid dynamics (CFD) and experimental fin data, we develop a UUV model that focuses on an accurate representation of the fin-generated forces. Models of these forces span a range of controllable fin parameters, as well as take into account leading-trailing fin interactions and free stream flow speeds. The vehicle model is validated by comparing open-loop simulated responses with experimentally measured responses to identical fin inputs. Closed-loop control algorithms, which command changes in fin kinematics, are tested on the vehicle. Comparison of experimental and simulation results for various maneuvers validates the fin and vehicle models, and demonstrates the precise maneuvering capabilities enabled by the actively controlled curvature pectoral fins.


Author(s):  
Giovanni Iacobello ◽  
David E. Rival

Coherent structure detection (CSD) is a long-lasting issue in fluid mechanics research as the presence of spatio-temporal coherent motion enables simpler ways to characterize the flow dynamics. Such reducedorder representation, in fact, has significant implications for the understanding of the dynamics of flows, as well as their modeling and control (Hussain, 1986). While the Eulerian framework has been extensively adopted for CSD, Lagrangian coherent structures have recently received increasing attention, mainly driven by advancements in Lagrangian flow measurement techniques (Haller, 2015; Hadjighasem et al., 2017). Lagrangian particle tracking (LPT), in particular, is widely used nowadays due to its ability to quantity fluid-parcel trajectories in three-dimensional volumes (Schanz et al., 2016).


2021 ◽  
Author(s):  
Ahmad Kourani ◽  
Naseem Daher

Abstract This work presents the nonlinear dynamical model and motion controller of a system consisting of an unmanned aerial vehicle (UAV) that is tethered to a floating buoy in the three-dimensional (3D) space. Detailed models of the UAV, buoy, and the coupled tethered system dynamics are presented in a marine environment that includes surface-water currents and oscillating gravity waves, in addition to wind gusts. This work extends the previously modeled planar (vertical) motion of this novel robotic system to allow its free motion in all three dimensions. Furthermore, a Directional Surge Velocity Control System (DSVCS) is hereby proposed to allow both the free movement of the UAV around the buoy when the cable is slack, and the manipulation of the buoy’s surge velocity when the cable is taut. Using a spherical coordinate system centered at the buoy, the control system commands the UAV to apply forces on the buoy at specific azimuth and elevation angles via the tether, which yields a more appropriate realization of the control problem as compared to the Cartesian coordinates where the traditional x- , y- , and z -coordinates do not intuitively describe the tether’s tension and orientation. The proposed robotic system and controller offer a new method of interaction and collaboration between UAVs and marine systems from a locomotion perspective. The system is validated in a virtual high-fidelity simulation environment, which was specifically developed for this purpose, while considering various settings and wave scenarios.


Author(s):  
Magdi S. Mahmoud ◽  
Nezar M. Alyazidi ◽  
Abdalrahman M. Hassanine

Overhead crane systems play a vital role in different factories to transport heavy loads. This paper provides an overview of recent developments in the modeling and control of three-dimensional overhead crane systems. It provides a categorized survey of the published work. Different control methodologies when applied to overhead crane are examined, outlined and assessed to aid for future work.


Author(s):  
Boštjan Blažič ◽  
Leopold Herman ◽  
Ambrož Božiček ◽  
Igor Papič

Sign in / Sign up

Export Citation Format

Share Document