scholarly journals Modeling and Control of a Dragonfly-Like Robot

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Micael S. Couceiro ◽  
N. M. Fonseca Ferreira ◽  
J. A. Tenreiro Machado

Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, the dynamics of a dragonfly-inspired robot is studied. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movements, the dynamics, and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.

2020 ◽  
Vol 1 ◽  
Author(s):  
Christian Di Natali ◽  
Stefano Toxiri ◽  
Stefanos Ioakeimidis ◽  
Darwin G. Caldwell ◽  
Jesús Ortiz

Abstract Wearable devices, such as exoskeletons, are becoming increasingly common and are being used mainly for improving motility and daily life autonomy, rehabilitation purposes, and as industrial aids. There are many variables that must be optimized to create an efficient, smoothly operating device. The selection of a suitable actuator is one of these variables, and the actuators are usually sized after studying the kinematic and dynamic characteristics of the target task, combining information from motion tracking, inverse dynamics, and force plates. While this may be a good method for approximate sizing of actuators, a more detailed approach is necessary to fully understand actuator performance, control algorithms or sensing strategies, and their impact on weight, dynamic performance, energy consumption, complexity, and cost. This work describes a learning-based evaluation method to provide this more detailed analysis of an actuation system for our XoTrunk exoskeleton. The study includes: (a) a real-world experimental setup to gather kinematics and dynamics data; (b) simulation of the actuation system focusing on motor performance and control strategy; (c) experimental validation of the simulation; and (d) testing in real scenarios. This study creates a systematic framework to analyze actuator performance and control algorithms to improve operation in the real scenario by replicating the kinematics and dynamics of the human–robot interaction. Implementation of this approach shows substantial improvement in the task-related performance when applied on a back-support exoskeleton during a walking task.


2013 ◽  
Vol 461 ◽  
pp. 903-907
Author(s):  
Zhen Chao Zhu ◽  
Zhen Sui ◽  
Yan Tao Tian ◽  
Hong Jiang

Considering the sagittal movement and the lateral swing in the humanoid practical walking, a new humanoid passive dynamic bipedal robot with the lateral movable upper body is proposed in this paper. The finite state machine (FSM) theory is adopted to control the robot, which changes agilely the control strategy according to the practical states of the humanoid gait. In the method, the torque compensation adaptive excitation control strategy is used for sagittal control and PID is applied to the upper body for the robots lateral stability. It is verified by the co-simulation based on ADAMS and MATLAB that the bipedal robot can reach the stable humanoid gait with the high energy efficiency.


Author(s):  
Jason D. Geder ◽  
Ravi Ramamurti ◽  
John Palmisano ◽  
Marius Pruessner ◽  
Banahalli Ratna ◽  
...  

This paper describes the modeling and control development of a bio-inspired unmanned underwater vehicle (UUV) propelled by four pectoral fins. Based on both computational fluid dynamics (CFD) and experimental fin data, we develop a UUV model that focuses on an accurate representation of the fin-generated forces. Models of these forces span a range of controllable fin parameters, as well as take into account leading-trailing fin interactions and free stream flow speeds. The vehicle model is validated by comparing open-loop simulated responses with experimentally measured responses to identical fin inputs. Closed-loop control algorithms, which command changes in fin kinematics, are tested on the vehicle. Comparison of experimental and simulation results for various maneuvers validates the fin and vehicle models, and demonstrates the precise maneuvering capabilities enabled by the actively controlled curvature pectoral fins.


2002 ◽  
Vol 50 (5) ◽  
pp. 529 ◽  
Author(s):  
N. L. McKenzie ◽  
A. N. Start ◽  
R. D. Bullen

Airframe design parameters related to flight performance, stability and control had tight, functionally appropriate relationships with the foraging niches and echolocation parameters of nine species comprising the bat fauna of the Little Sandy Desert, Australia. The airframe parameters segregated into two near-independent groups, one related to microhabitat use, the other to foraging strategy. The structure of the desert's bat fauna is displayed in these terms, and its organisation is compared with the faunas of surrounding regions. A diversity–productivity model of faunal structure is revealed, with an organisation that conforms with the 'specialisation' hypothesis. Clear family-level relationships between phylogeny and foraging ecology imply that ecological specialisations occurred early in the evolution of bats.


Author(s):  
Boštjan Blažič ◽  
Leopold Herman ◽  
Ambrož Božiček ◽  
Igor Papič

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540014 ◽  
Author(s):  
Seung-Woo Byun ◽  
Donghee Kim ◽  
Hyeung-Sik Choi ◽  
Joon-Young Kim

This paper describes the mathematical modeling and control algorithms of an unmanned underwater vehicle (UUV) named Minekiller. This UUV has two longitudinal thrusters, one vertical thruster, and an internal mass moving system, which can control the pitch rate. The UUV is equipped with a movable mass for pitch control. It is different from other common UUVs, in that it can maintain a static pitch angle. The UUV's 6-DOF (Degrees of Freedom) dynamics model is derived from the hydrodynamic forces and moments acting on it. We applied these hydrodynamic coefficients to dynamic modeling for numerical simulations by MATLAB/SIMULINK©. To compare the performance in various cases, we used a PID controller for depth and heading control. Also, the navigation controller can analyze the way-point tracking performance. These simulation results show the performance of the control algorithms and maneuvering performance of the underwater vehicle.


2014 ◽  
Vol 635-637 ◽  
pp. 1360-1363 ◽  
Author(s):  
Yan Fang Hang ◽  
Jing Lu ◽  
Ying Jun Hu

The system of Micro Flapping-wing Rotor to achieve the flapping and rotation motions is first introduced briefly. Then the system dynamic model which includes the flapping rotary flight aerodynamics at a low Reynolds number regime, the body dynamics, the electromagnetic actuator and the control surface is described. This model and system simulation in the preliminary design phase may provide the opportunity for designers to make fundamental design decisions early to improve the flight performance. Also, the simulator is used to study open loop flight dynamics and test a periodic proportional output feedback control law. Simulation testing shows that the control system has a good flight performance for this flapping wing rotor.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 92
Author(s):  
José Antonio Bautista-Medina ◽  
Rogelio Lozano ◽  
Antonio Osorio-Cordero

This paper proposes a simple flying rotor prototype composed of two small airplanes attached to each other with a rigid rod so that they can rotate around themselves. The prototype is intended to perform hover flights with more autonomy than existing classic helicopters or quad-rotors. Given that the two airplanes can fly apart from each other, the induced flow which normally appears in rotorcrafts will be significantly reduced. The issue that is addressed in the paper is how this flying rotor prototype can be modeled and controlled. A model of the prototype is obtained by computing the kinetic and potential energies and applying the Euler Lagrange equations. Furthermore, in order to simplify the equations, it has been considered that the yaw angular displacement evolves much faster than the other variables. Furthermore a study is presented to virtually create a swashplate which is a central mechanism in helicopters. Such virtual swashplate is created by introducing a sinusoidal control on the airplanes’ elevators. The torque amplitude will be proportional to the sinusoidal amplitude and the direction will be determined by the phase of the sinusoidal. A simple nonlinear control algorithm is proposed and its performance is tested in numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document