Modified acceleration feedback for active vibration control of aerospace structures

2010 ◽  
Vol 19 (6) ◽  
pp. 065015 ◽  
Author(s):  
S Nima Mahmoodi ◽  
Mehdi Ahmadian
2000 ◽  
Author(s):  
Sathya V. Hanagud ◽  
Patrick J. Roberts

Abstract In most structures, fatigue critical areas are associated with regions of high stresses. Sometimes, passive stiffening of structures can displace these high stress regions. Thus, for most applications, active vibration control is preferred. However, the question of whether an active vibration control scheme involving a set of actuators will reduce stresses in the whole structure or create high stress areas in the vicinity of the actuators arises. In previous works, this question has been addressed for cantilever beams which showed that the stresses are reduced by approximately the same order of magnitude as the reduction in vibrations. However, many aerospace structures are constructed of thin walled components whose response to vibration reduction can be very different than that of beams. In this paper, the stresses induced by an active vibration control system, based on the use of an offset piezoceramic stack actuator with acceleration feedback control, are investigated in a plate structure. A 3-D finite element simulation of the closed loop active vibration control system is developed and both the closed loop stresses and vibration amplitude reductions are studied.


2003 ◽  
Author(s):  
V. Shankar ◽  
B. V. Nagaraja ◽  
R. Balasubramaniam ◽  
Amrutha Shree S ◽  
Skanda N. Muthaiah

1999 ◽  
Author(s):  
Maxime P. Bayon de Noyer ◽  
Patrick J. Roberts ◽  
Sathya V. Hanagud

Abstract In most structures, fatigue critical areas are associated with regions of high stresses. Passive stiffening of structures usually displaces these high stress regions. Thus, for most applications, active vibration control is preferred. However, the question of whether an active vibration control scheme involving a set of actuators will reduce stresses in the whole structure or create high stress areas in the vicinity of the actuators arises. In this paper, the stresses induced by an active vibration control system based on the use of an offset piezoceramic stack actuator with acceleration feedback control are investigated. Using a modal analysis of the actuator acting on a cantilever beam, a low frequency approximation of the actuator is developed in the form of a spring and two driving forces. Based on this approximation, a 3-D finite element simulation of the closed loop active vibration control system is developed and the closed loop stresses are studied.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 403-411
Author(s):  
Shengquan Li ◽  
Chaowei Zhu ◽  
Juan Li ◽  
Qibo Mao

Considering the internal and external disturbances in actual engineering structure, a composite active vibration control method is proposed for an all-clamped piezoelectric panel. First, the theoretical modal analysis and laser vibrometer are employed to obtain the natural frequency and mode shape of the panel, for reasonable arrangement of actuator and accelerometer. Second, a nonlinear extended state observer is introduced to estimate the total disturbances, i.e., modeling uncertainties, high-order harmonics, coupling and external excitations. Third, the estimated value is used to compensate and attenuate the influence of the total disturbances in real time. In addition, the feedback controller based on the proportional differential and acceleration feedback method is designed to enhance the vibration suppression performance of the whole system. Finally, a semi-physical platform is built in MATLAB/Simulink real-time environment with the NI-PCIe6343 acquisition card to verify the effectiveness and superiority of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document