System design for active vibration control of aerospace structures

2003 ◽  
Author(s):  
V. Shankar ◽  
B. V. Nagaraja ◽  
R. Balasubramaniam ◽  
Amrutha Shree S ◽  
Skanda N. Muthaiah
1994 ◽  
Vol 6 (4) ◽  
pp. 304-311
Author(s):  
Kenzo Nonami ◽  
◽  
Qi-fu Fan ◽  

The <I>H</I>∞ control theory is currently the most powerful method for robust control theory, and is useful as well as practical because a great amount of software related to computer-aided control system design is available. However, it has some disadvantages in that the <I>H</I>∞ control system is a conservative one and cannot deal with robust performance. This is due to maximum singular values. Doyle proposed a structured singular value instead of a maximum singular value. This is called ∞ synthesis theory and actively deals with robust performance using D-K iteration. This paper is concerned with computeraided design of active vibration control systems based on the μ synthesis theory. First, the paradigm of the μ synthesis theory is described concerning μ, robust performance, and D-K iteration. Next, the relationships between the μ controller, robust performance, nominal performance, and robust stability are discussed for vibration control systems.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

2021 ◽  
Author(s):  
Nikolaos Chrysohoidis ◽  
Grigoris Chatziathanasiou ◽  
Georgopoulos Kostas ◽  
Dimitrios A. Saravanos

Sign in / Sign up

Export Citation Format

Share Document