Exciton and donor binding energies in quantum-well wires and quantum dots a fractional-dimensional space approach

2004 ◽  
Vol 13 (5) ◽  
pp. 759-764
Author(s):  
Li Hong ◽  
Kong Xiao-Jun
2001 ◽  
Vol 692 ◽  
Author(s):  
M. de Leyva-Dios ◽  
L. E. Oliveira

AbstractWe have used the variational and fractional-dimensional space approaches in a study of the virial theorem value and scaling of the shallow-donor binding energies versus donor Bohr radiusin GaAs-(Ga,Al)As semiconductor quantum wells and quantum-well wires. A comparison is made with previous results with respect to exciton states. In the case the donor ground-state wave function may be approximated by a D-dimensional hydrogenic wave function, the virial theorem value equals 2 and the scaling rule for the donor binding energy versus quantum-sized Bohr radius is hyperbolic, both for quantum wells and wires. In contrast, calculations within the variational scheme show that the scaling of the donor binding energies with quantum-sized Bohr radius is in general nonhyperbolic and that the virial theorem value is nonconstant.


1990 ◽  
Vol 216 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.


2004 ◽  
Vol 21 (1) ◽  
pp. 166-169 ◽  
Author(s):  
Zhang Ying-Tao ◽  
Di Bing ◽  
Xie Zun ◽  
Li You-Cheng

1991 ◽  
Vol 43 (2) ◽  
pp. 1824-1827 ◽  
Author(s):  
N. Porras Montenegro ◽  
J. López-Gondar ◽  
L. E. Oliveira

Sign in / Sign up

Export Citation Format

Share Document