scholarly journals Emergent geometry fromq-deformations of Script N = 4 super Yang-Mills

2006 ◽  
Vol 2006 (08) ◽  
pp. 006-006 ◽  
Author(s):  
David Berenstein ◽  
Diego H Correa
Keyword(s):  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2012 ◽  
Vol 27 (17) ◽  
pp. 1250088 ◽  
Author(s):  
BADIS YDRI

We present a study of D = 4 supersymmetric Yang–Mills matrix models with SO(3) mass terms based on the Monte Carlo method. In the bosonic models we show the existence of an exotic first-/second-order transition from a phase with a well defined background geometry (the fuzzy sphere) to a phase with commuting matrices with no geometry in the sense of Connes. At the transition point the sphere expands abruptly to infinite size then it evaporates as we increase the temperature (the gauge coupling constant). The transition looks first-order due to the discontinuity in the action whereas it looks second-order due to the divergent peak in the specific heat. The fuzzy sphere is stable for the supersymmetric models in the sense that the bosonic phase transition is turned into a very slow crossover transition. The transition point is found to scale to zero with N. We conjecture that the transition from the background sphere to the phase of commuting matrices is associated with spontaneous supersymmetry breaking. The eigenvalues distribution of any of the bosonic matrices in the matrix phase is found to be given by a nonpolynomial law obtained from the fact that the joint probability distribution of the four matrices is uniform inside a solid ball with radius R. The eigenvalues of the gauge field on the background geometry are also found to be distributed according to this nonpolynomial law.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


1995 ◽  
Vol 52 (4) ◽  
pp. 2402-2411 ◽  
Author(s):  
C. R. Hu ◽  
S. G. Matinyan ◽  
B. Müller ◽  
A. Trayanov ◽  
T. M. Gould ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document