scholarly journals Gauging the higher-spin-like symmetries by the Moyal product

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.

2018 ◽  
Vol 33 (34) ◽  
pp. 1845007
Author(s):  
Loriano Bonora

It is shown that, contrary to a widespread prejudice, massless higher spin (HS) field theories can be defined in flat space–time. Examples of Yang–Mills-like theories with infinite many local fields of any spin are constructed explicitly in any dimension, along with Chern–Simons-like models in any odd dimension. These theories are defined via actions invariant under HS gauge transformations and their equations of motion are derived. It is also briefly explained why these theories circumvent well-known no-go theorems.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.


2007 ◽  
Vol 75 (2) ◽  
Author(s):  
A. R. Gover ◽  
K. Hallowell ◽  
A. Waldron
Keyword(s):  

2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


1989 ◽  
Vol 04 (10) ◽  
pp. 971-982
Author(s):  
J. AVAN

A set of conformally covariant dressing transformations is constructed for the supersym-metric N=3 self-duality equations in four dimensions, using the associated covariant linear system. They form a closed, 5+6-index algebra, up to field-dependent gauge transformations, containing the previously known loop algebras as a particular subset. This construction generalizes the formerly built set of conformally covariant DT for ordinary self-dual Yang-Mills.


Sign in / Sign up

Export Citation Format

Share Document