scholarly journals Generalized Berezin quantization, Bergman metrics and fuzzy laplacians

2008 ◽  
Vol 2008 (09) ◽  
pp. 059-059 ◽  
Author(s):  
Calin Iuliu Lazaroiu ◽  
Daniel McNamee ◽  
Christian Sämann
2020 ◽  
Vol 18 (4) ◽  
pp. 1091-1126
Author(s):  
Wen Lu ◽  
Xiaonan Ma ◽  
George Marinescu

Author(s):  
Vladimir F. Molchanov ◽  
Svetlana V. Tsykina

The basic notion of the Berezin quantization on a manifold M is a correspondence which to an operator A from a class assigns the pair of functions F and F^♮ defined on M. These functions are called covariant and contravariant symbols of A. We are interested in homogeneous space M=G/H and classes of operators related to the representation theory. The most algebraic version of quantization — we call it the polynomial quantization — is obtained when operators belong to the algebra of operators corresponding in a representation T of G to elements X of the universal enveloping algebra Env g of the Lie algebra g of G. In this case symbols turn out to be polynomials on the Lie algebra g. In this paper we offer a new theme in the Berezin quantization on G/H: as an initial class of operators we take operators corresponding to elements of the group G itself in a representation T of this group. In the paper we consider two examples, here homogeneous spaces are para-Hermitian spaces of rank 1 and 2: a) G=SL(2;R), H — the subgroup of diagonal matrices, G/H — a hyperboloid of one sheet in R^3; b) G — the pseudoorthogonal group SO_0 (p; q), the subgroup H covers with finite multiplicity the group SO_0 (p-1,q -1)×SO_0 (1;1); the space G/H (a pseudo-Grassmann manifold) is an orbit in the Lie algebra g of the group G.


Author(s):  
Nikolay Shcherbina

Abstract We prove that for a pseudoconvex domain of the form $${\mathfrak {A}} = \{(z, w) \in {\mathbb {C}}^2 : v > F(z, u)\}$$ A = { ( z , w ) ∈ C 2 : v > F ( z , u ) } , where $$w = u + iv$$ w = u + i v and F is a continuous function on $${\mathbb {C}}_z \times {\mathbb {R}}_u$$ C z × R u , the following conditions are equivalent: The domain $$\mathfrak {A}$$ A is Kobayashi hyperbolic. The domain $$\mathfrak {A}$$ A is Brody hyperbolic. The domain $$\mathfrak {A}$$ A possesses a Bergman metric. The domain $$\mathfrak {A}$$ A possesses a bounded smooth strictly plurisubharmonic function, i.e. the core $$\mathfrak {c}(\mathfrak {A})$$ c ( A ) of $$\mathfrak {A}$$ A is empty. The graph $$\Gamma (F)$$ Γ ( F ) of F can not be represented as a foliation by holomorphic curves of a very special form, namely, as a foliation by translations of the graph $$\Gamma ({\mathcal H})$$ Γ ( H ) of just one entire function $${\mathcal {H}} : {\mathbb {C}}_z \rightarrow {\mathbb {C}}_w$$ H : C z → C w .


2006 ◽  
Vol 38 (4) ◽  
pp. 663-676
Author(s):  
I. Carrillo-Ibarra ◽  
H. García-Compeán ◽  
W. Herrera-Suárez

Sign in / Sign up

Export Citation Format

Share Document