scholarly journals Trace anomaly, Perelman’s functionals and the cosmological constant

Author(s):  
M.J. Luo
2015 ◽  
Vol 357 (1) ◽  
Author(s):  
Ertan Güdekli ◽  
Nurgissa Myrzakulov ◽  
Koblandy Yerzhanov ◽  
Ratbay Myrzakulov

Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 123
Author(s):  
Petr Jizba ◽  
Lesław Rachwał ◽  
Stefano G. Giaccari ◽  
Jaroslav Kňap

We address the issue of a dynamical breakdown of scale invariance in quantum Weyl gravity together with related cosmological implications. In the first part, we build on our previous work [Phys. Rev. D2020, 101, 044050], where we found a non-trivial renormalization group fixed point in the infrared sector of quantum Weyl gravity. Here, we prove that the ensuing non-Gaussian IR fixed point is renormalization scheme independent. This confirms the feasibility of the analog of asymptotic safety scenario for quantum Weyl gravity in the IR. Some features, including non-analyticity and a lack of autonomy, of the system of β-functions near a turning point of the renormalization group at intermediate energies are also described. We further discuss an extension of the renormalization group analysis to the two-loop level. In particular, we show universal properties of the system of β-functions related to three couplings associated with C2 (Weyl square), G (Gauss–Bonnet), and R2 (Ricci curvature square) terms. Finally, we discuss various technical and conceptual issues associated with the conformal (trace) anomaly and propose possible remedies. In the second part, we analyze physics in the broken phase. In particular, we show that, in the low-energy sector of the broken phase, the theory looks like Starobinsky f(R) gravity with a gravi-cosmological constant that has a negative sign in comparison to the usual matter-induced cosmological constant. We discuss implications for cosmic inflation and highlight a non-trivial relation between Starobinsky’s parameter and the gravi-cosmological constant. Salient issues, including possible UV completions of quantum Weyl gravity and the role of the trace anomaly matching, are also discussed.


2008 ◽  
Vol 78 (2) ◽  
Author(s):  
Jurjen F. Koksma ◽  
Tomislav Prokopec

Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
J. Gutowski ◽  
W. A. Sabra

Abstract We classify all supersymmetric solutions of minimal D = 4 gauged supergravity with (2) signature and a positive cosmological constant which admit exactly one Killing spinor. This classification produces a geometric structure which is more general than that found for previous classifications of N = 2 supersymmetric solutions of this theory. We illustrate how the N = 2 solutions which consist of a fibration over a 3-dimensional Lorentzian Gauduchon-Tod base space can be written in terms of this more generic geometric structure.


Sign in / Sign up

Export Citation Format

Share Document