Some applications of perturbation theory in Atomic Physics

Author(s):  
Hector Oscar Di Rocco ◽  
Julio C. Aguiar
Author(s):  
Geoffrey Brooker

“Essays in Physics” gives accounts of 32 chosen topics. The level is that of a 3–4-year university course in Physics. The topics discussed are diverse but “mainstream”. Each essay aims to say something fresh that complements what the reader will find elsewhere. Just what “fresh” means inevitably depends somewhat on the subject matter. Some chapters give a “different” slant on a familiar idea (e.g. electromagnetic energy, Lorentz transformation, photon emission). Some contain an analysis not available elsewhere (diffraction, feedback stability). Some correct material that is commonplace in many textbooks (much atomic physics). Some add insightful discussion to standard material (free energy, Brillouin zones). One in particular refines technique (perturbation theory). One brings order to confusion (-m dB). The aim in all cases is to encourage a fuller, and correct, understanding, and an enhanced intellectual acuity (critical faculty). With a subject as mature as physics, it is bold to claim originality. However I will dare to make that claim, in particular for Chapters 10, 22 and 30, but also for parts of most other chapters.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450052 ◽  
Author(s):  
Edward Anderson ◽  
Sophie Kneller

We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1988 ◽  
Vol 102 ◽  
pp. 343-347
Author(s):  
M. Klapisch

AbstractA formal expansion of the CRM in powers of a small parameter is presented. The terms of the expansion are products of matrices. Inverses are interpreted as effects of cascades.It will be shown that this allows for the separation of the different contributions to the populations, thus providing a natural classification scheme for processes involving atoms in plasmas. Sum rules can be formulated, allowing the population of the levels, in some simple cases, to be related in a transparent way to the quantum numbers.


2020 ◽  
pp. 27-33
Author(s):  
Boris A. Veklenko

Without using the perturbation theory, the article demonstrates a possibility of superluminal information-carrying signals in standard quantum electrodynamics using the example of scattering of quantum electromagnetic field by an excited atom.


Sign in / Sign up

Export Citation Format

Share Document