scholarly journals A toy model for the auditory system that exploits stochastic resonance

Author(s):  
Francesco Veronesi ◽  
Edoardo Milotti

Abstract The transduction process that occurs in the inner ear of the auditory system is a complex mechanism which requires a non-linear dynamical description. In addition to this, the stochastic phenomena that naturally arise in the inner ear during the transduction of an external sound into an electro-chemical signal must also be taken into account. The presence of noise is usually undesirable, but in non-linear systems a moderate amount of noise can improve the system's performance and increase the signal-to-noise ratio. The phenomenon of stochastic resonance combines randomness with non-linearity and is a natural candidate to explain at least part of the hearing process which is observed in the inner ear. In this work, we present a toy model of the auditory system which shows how stochastic resonance can be instrumental to sound perception, and suggests an explanation of the frequency dependence of the hearing threshold.

2020 ◽  
Vol 19 (03) ◽  
pp. 2050024
Author(s):  
Gang Zhang ◽  
Dayun Hu ◽  
Tianqi Zhang

The classical bistable stochastic resonance (CBSR) has the disadvantage of output saturation, which limits the enhancement capability for weak signal detection. To break the limitation of output saturation, a novel unsaturated piecewise non-linear bistable stochastic resonance (PNBSR) method is proposed. Because the trichotomous noise exists in practical engineering, the PNBSR under trichotomous noise is explored in this paper. The performance of PNBSR is evaluated by the index, i.e., the mean of [Formula: see text] times signal-to-noise ratio increase (MSNRI). The double-peak phenomenon of SR is observed under trichotomous noise. Experiments reveal that the proposed PNBSR method performs best on extracting characteristic components from a strong noise background, compared with the CBSR method and the traditional digital filter. Then, the PNBSR is applied to the fault diagnosis of rolling element bearings. The paper focuses on solving practical engineering problems with mathematical methods.


2021 ◽  
Author(s):  
Richard Xu

Stochastic Resonance is a phenomenon first discovered in 1981. The phenomenon describes that under certain conditions, in a non-linear system, a noise added to an input can make the input signal pass the non-linear barrier. This study will investigate how the shape of the input signal wave can affect the output efficiency. A circuit with a noise source, an AC source, a Schmitt trigger (act as the non-linear system) is simulated. Various shapes of the wave were tested in the simulator, which resulted in different spectrums and voltage-time graphs of the output and output efficiencies. After comparing the results for different wave shapes, the pulse wave and the square wave are observed to have the highest output efficiency and signal-to-noise ratio, followed by sinusoidal wave, triangular wave, and sawtooth wave in that order.


2014 ◽  
Vol 2 ◽  
pp. 417-420
Author(s):  
Florian Gomez ◽  
Stefan Martignoli ◽  
Ruedi Stoop

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé

AbstractThe occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with an emphasis on the analytical formulation of the problem as well as a possible analytical derivation of key quantifiers of stochastic resonance. The nonlinear Fokker–Planck equation describing the system dynamics, together with the corresponding Ito–Langevin equation, is formulated. In the linear response regime, analytical expressions of the spectral amplification, of the signal-to-noise ratio and of the hysteresis loop area are derived as quantifiers of stochastic resonance. These quantifiers are found to be strongly dependent on the parameters controlling the type of diffusion; in particular, the peak characterizing the signal-to-noise ratio occurs only in close ranges of parameters. Results introduce the relevant information that, taking into consideration the interactions of anomalous diffusive systems with a periodic signal, can provide a better understanding of the physics of stochastic resonance in bistable systems driven by periodic forces.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Daniele Bernardeschi ◽  
Yann Nguyen ◽  
Francesca Yoshie Russo ◽  
Isabelle Mosnier ◽  
Evelyne Ferrary ◽  
...  

Objective. To evaluate the cutaneous and the inner ear tolerance of bioactive glass S53P4 when used in the mastoid and epitympanic obliteration for chronic otitis surgery.Material and Methods. Forty-one cases have been included in this prospective study. Cutaneous tolerance was clinically evaluated 1 week, 1 month, and 3 months after surgery with a physical examination of the retroauricular and external auditory canal (EAC) skin and the presence of otalgia; the inner ear tolerance was assessed by bone-conduction hearing threshold 1 day after surgery and by the presence of vertigo or imbalance.Results. All surgeries but 1 were uneventful: all patients maintained the preoperative bone-conduction hearing threshold except for one case in which the round window membrane was opened during the dissection of the cholesteatoma in the hypotympanum and this led to a dead ear. No dizziness or vertigo was reported. Three months after surgery, healing was achieved in all cases with a healthy painless skin. No cases of revision surgery for removal of the granules occurred in this study.Conclusion. The bioactive glass S53P4 is a well-tolerated biomaterial for primary or revision chronic otitis surgery, as shown by the local skin reaction which lasted less than 3 months and by the absence of labyrinthine complications.


2021 ◽  
Author(s):  
Daniel R. Romano ◽  
Eri Hashino ◽  
Rick F. Nelson

AbstractSensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.


2004 ◽  
Vol 04 (02) ◽  
pp. L247-L265 ◽  
Author(s):  
ARUNEEMA DAS ◽  
N. G. STOCKS ◽  
A. NIKITIN ◽  
E. L. HINES

We explore stochastic resonance (SR) effects in a single comparator (threshold detector) driven by either a Gaussian or exponentially distributed aperiodic signal. The behaviour of different performance measures, namely the cross-correlation coefficient (CCC), signal-to-noise ratio (SNR) and mutual information, I, has been investigated. The signals were added to Gaussian noise before being passed through the threshold detector. For the two signals tested, we observe the perhaps surprising result that the SNR never displays SR. However, SR is displayed by both the CCC and I for Gaussian signals. For exponential signals SR is not displayed by any of the measures. By generating signals whose probability distributions have the generalized Gaussian form Ae-|βx|n it is possible to demonstrate that SR ceases to occur if n<1.7. We conclude that SR is only observable in threshold based systems for certain types of aperiodic signal. Specifically, SR is not expected to occur for signals whose probability density functions have long, slowly decaying, tails. We discuss the implication of these results for the role of SR in biological sensory systems.


1994 ◽  
Vol 04 (02) ◽  
pp. 441-446 ◽  
Author(s):  
V.S. ANISHCHENKO ◽  
M.A. SAFONOVA ◽  
L.O. CHUA

Using numerical simulation, we establish the possibility of realizing the stochastic resonance (SR) phenomenon in Chua’s circuit when it is excited by either an amplitude-modulated or a frequency-modulated signal. It is shown that the application of a frequency-modulated signal to a Chua’s circuit operating in a regime of dynamical intermittency is preferable over an amplitude-modulated signal from the point of view of minimizing the signal distortion and maximizing the signal-to-noise ratio (SNR).


Sign in / Sign up

Export Citation Format

Share Document