Development of MEMS Composite Sensor with Temperature Compensation for Tire Pressure Monitoring System

Author(s):  
Jiahong Zhang ◽  
Chao Wang ◽  
Xiaolu Xie ◽  
Min Li ◽  
Ling Li ◽  
...  

Abstract The pressure and temperature inside the tire is mainly monitored by the tire pressure monitoring system (TPMS). In order to improve the integration of the TPMS system, moreover enhance the sensitivity and temperature-insensitivity of pressure measurement, this paper proposes a microelectromechanical (MEMS) chip-level sensor based on stress-sensitive aluminum-silicon hybrid structures with amplified piezoresistive effect and temperature-dependent aluminum-silicon hybrid structures for hardware and software temperature compensations. Two types of aluminum-silicon hybrid structures are located inside and outside the strained menbrane to simultaneously realize the measurement of pressure and temperature. The model of this composite sensor chip is firstly designed and verified for its effectiveness by using finite element numerical simulation, and then it is fabricated based on the standard MEMS process. The experiments indicate that the pressure sensitivity of the sensor is between 0.126 mV/(V·kPa) and 0.151 mV/(V·kPa) during the ambient temperature ranges from -20 ℃ to 100 ℃, while the measurement error, sensitivity and temperature coefficient of temperature-dependent hybrid structures are individually ± 0.91℃, -1.225 mV/(V·℃) and -0.150%/℃. The thermal coefficient of offset (TCO) of pressure measurement can be reduced from -3.553%FS/℃ to -0.375%FS/℃ based on the differential output of the proposed sensor. In order to obtain the better performance of temperature compensation, Elman neural network based on ant colony algorithm is applied in the data fusion of differential output to further eliminate the temperature drift error. Based on which, the overall measured error is within 3.45 kPa, which is less than ±1.15%FS. The thermal coefficient of offset (TCO) is -0.017%FS/℃, and the thermal coefficient of span (TCS) is -0.020%/FS℃. The research results may provide a useful reference for the development of the high-performance MEMS composite sensor for the TPMS system.

Mechatronics ◽  
2021 ◽  
Vol 74 ◽  
pp. 102492
Author(s):  
Simone Formentin ◽  
Luca Onesto ◽  
Tommaso Colombo ◽  
Alessandro Pozzato ◽  
Sergio M. Savaresi

2014 ◽  
Vol 1070-1072 ◽  
pp. 392-397
Author(s):  
Jun Hui Xu ◽  
Ming Qiu Gao ◽  
Ji Qiang Gao ◽  
Xiang Bao

In the background of the main technologies of fuel economy in automobiles developed to a certain stage, it is necessary to reduce fuel consumption and increase the engine efficiency by developing other auxiliary technologies such as improving the ratio of pure energy drive, low rolling resistance tires, tire pressure monitoring system and gear shift indicators (GSI). This article introduces the principle of GSI, analyses how GSI works in improving engine efficiency, and then evaluates the method for determination of the relative saving rate of fuel consumption, which method was introduced in the EU regulation EC No. 65/2012.


Tire pressure monitoring device/system (TPMS) is an electronic device that monitors the air strain of an vehicle tire and indicates the pressure to the driver.Upkeep of tire strain in automobile is vital owing to the reality depletion within the strain of tire ends up in diminished combustible potency and future scratch in tires which ends up in substitution of tires fairly again and again. In this paper the used conception relies upon eliminating above problems and observing those facts continuously using pressure sensor with the help of some devices and wireless modules such as zigbee or rf-transreciever and also STM32 on-chip computer. A different mouth is distended other than conventional muzzle within that device is found which communicate via wireless apparatus and obtained with the help of the wireless module such as zigbee gift out of doors and also the signal is been dispatched to on-chip computer which computer screen units and unveil the strain name (name of tire) and actual strain on a screen monitor which notify the person to fill the air in tire. With the use of this system the user of the vehicle can eliminate the wheel is alignment and supply protection to the vehicle.


SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 70 ◽  
Author(s):  
Lukman Medriavin Silalahi ◽  
Mudrik Alaydrus ◽  
Agus Dendi Rochendi ◽  
Muhtar Muhtar

Currently, the Tire Pressure Monitoring System (TPMS) only monitors the condition of a tire pressure. However, there are no particular reactions taking place after the value of its tire pressure is discovered. In fact, the value of a tire pressure determines driving comfort and safety Therefore, this research proposed a method to integrate a TPMS and a Pressure Sensor Base (PSB) with a particular reaction required to fulfill tires automatically. The proposed TPMS has an electronic device unit directly attached to a tire’s valve. This unit includes pressure sensors, microcontrollers, Bluetooth transmitters and batteries. An alert system is generated whenever tire pressure exceeds the maximum or minimum safe pressure level. Moreover, if the pressure measured is below the lowest level of the desired pressure, it will automatically activate the compressor. Several experiments have been carried out to analyze the proposed system. The integrated TPMS has proven to be able to be an alternative tool for the automotive sector to keep maintaining the tires and to improve a driving comfort and safety.


Sign in / Sign up

Export Citation Format

Share Document