Experimental realization of more quantum randomness generation based on non-projective measurement

2019 ◽  
Vol 52 (14) ◽  
pp. 145501
Author(s):  
Chen-Xi Liu ◽  
Jian Li ◽  
Tong-Jun Liu ◽  
Xiao-Run Wang ◽  
Si Wang ◽  
...  
2021 ◽  
Vol 126 (5) ◽  
Author(s):  
Ming-Han Li ◽  
Xingjian Zhang ◽  
Wen-Zhao Liu ◽  
Si-Ran Zhao ◽  
Bing Bai ◽  
...  

Author(s):  
I.M. Arbekov ◽  
Sergei N. Molotkov
Keyword(s):  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yi Yang ◽  
Bo Zhen ◽  
John D. Joannopoulos ◽  
Marin Soljačić

Abstract The Hofstadter model, well known for its fractal butterfly spectrum, describes two-dimensional electrons under a perpendicular magnetic field, which gives rise to the integer quantum Hall effect. Inspired by the real-space building blocks of non-Abelian gauge fields from a recent experiment, we introduce and theoretically study two non-Abelian generalizations of the Hofstadter model. Each model describes two pairs of Hofstadter butterflies that are spin–orbit coupled. In contrast to the original Hofstadter model that can be equivalently studied in the Landau and symmetric gauges, the corresponding non-Abelian generalizations exhibit distinct spectra due to the non-commutativity of the gauge fields. We derive the genuine (necessary and sufficient) non-Abelian condition for the two models from the commutativity of their arbitrary loop operators. At zero energy, the models are gapless and host Weyl and Dirac points protected by internal and crystalline symmetries. Double (8-fold), triple (12-fold), and quadrupole (16-fold) Dirac points also emerge, especially under equal hopping phases of the non-Abelian potentials. At other fillings, the gapped phases of the models give rise to topological insulators. We conclude by discussing possible schemes for experimental realization of the models on photonic platforms.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Stefan Heusler ◽  
Paul Schlummer ◽  
Malte S. Ubben

What is the origin of quantum randomness? Why does the deterministic, unitary time development in Hilbert space (the ‘4π-realm’) lead to a probabilistic behaviour of observables in space-time (the ‘2π-realm’)? We propose a simple topological model for quantum randomness. Following Kauffmann, we elaborate the mathematical structures that follow from a distinction(A,B) using group theory and topology. Crucially, the 2:1-mapping from SL(2,C) to the Lorentz group SO(3,1) turns out to be responsible for the stochastic nature of observables in quantum physics, as this 2:1-mapping breaks down during interactions. Entanglement leads to a change of topology, such that a distinction between A and B becomes impossible. In this sense, entanglement is the counterpart of a distinction (A,B). While the mathematical formalism involved in our argument based on virtual Dehn twists and torus splitting is non-trivial, the resulting haptic model is so simple that we think it might be suitable for undergraduate courses and maybe even for High school classes.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Jeong Rae Kim ◽  
Jiyeon N. Lee ◽  
Junsik Mun ◽  
Yoonkoo Kim ◽  
Yeong Jae Shin ◽  
...  

2014 ◽  
Vol 104 (1) ◽  
pp. 014103 ◽  
Author(s):  
Carly M. Donahue ◽  
Paul W. J. Anzel ◽  
Luca Bonanomi ◽  
Thomas A. Keller ◽  
Chiara Daraio

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
He Gao ◽  
Haoran Xue ◽  
Zhongming Gu ◽  
Tuo Liu ◽  
Jie Zhu ◽  
...  

AbstractTopological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.


Sign in / Sign up

Export Citation Format

Share Document